Сенсорно- перцептивные пюцессы 8 глава
3.4.2 Уровни восприятия В этой главе нами уже упоминалось множество разновидностей сенсорно-перцептивных процессов, начиная с различных модальностей и субмодальностей. Некоторые из использовавшихся различений имели характер частично коррелирующих между собой дихотомических классификаций большей или меньшей степени общности. По сегодняшний день в этих данных остается много неясных деталей, причем даже в знаниях об анатомической организации, казалось бы, вдоль и поперек изученной зрительной системы человека. Одним из наиболее удачных, на наш взгляд, является различение амбьентной и фокальной обработки (см. 3.4.1). Это различение близко другим попыткам выделения двух уровней восприятия, таким как этапы локализации и идентификации, и несколько более специфично, чем классическое описание предвнима-тельной и внимательной фаз обработки, например, в «Когнитивной психологии» Найссера (см. 2.2.2). Оно может быть использовано для описания не только зрительного, но и как минимум слухового восприятия (Scott, 2005). Остановимся на этих понятиях и стоящих за ними процессах подробнее. Под «амбьентной обработкой» понимаются процессы глобальной ориентации в пространстве и локализации объектов. По-видимому, такой характер имеет вся субкортикальная зрительная обработка, так как ограниченное количество нейронов не позволяет решать более сложную задачу идентификации объектов. Эти данные подтверждают предположение Бернштейна о том, что примитивные формы восприятия пространственного окружения связаны с субкортикальными структурами, в частности, базааьными ганглиями (стриатумом). Но перцептивная переработка пространственной информации существенна и для коры, где в этом отношении главным «специалистом» являются заднетеменные структуры (или так называемый «дорзальный поток» — см. 3.4.1). Эти же структуры вместе с премоторными отделами коры участвуют в реализации того, что было названо выше восприятием для действия35.
Как мы только что видели, у восприятия, непосредственно включенного в действие, возможно, нет памяти в привычном смысле слова — оно функционирует в режиме «здесь и теперь»36. Иными словами, хотя 35 Кроме того, накапливаются данные, что именно эти теменные структуры преиму 36 Упоминание памяти «в традиционном смысле слова» обусловлено тем, что в послед эти перцептивные процессы требуют определенного времени для их реализации и точного тайминга, функционально они осуществляются как бы в «постоянном настоящем». Восприятие стабильного пространственного окружения также не связано с существованием сколько-нибудь детального, удерживаемого в памяти образа объектов (см. 3.1.1). Вместо этого есть очень быстрый, требующий менее 100 мс процесс локализации самих объектов. Такое отсутствие опоры на память можно объяснить двояко. С функциональной точки зрения «внешний мир — лучшая модель самого себя» (см. 9.3.2). С точки зрения нейроанатоми-ческих связей, перцептивная обработка в дорзальном потоке осуществляется в структурах, удаленных от механизмов, обеспечивающих эксплицитное запоминание, то есть от височных долей и расположенного непосредственно под ними гиппокампа (см. 5.3.2).
Иначе обстоит дело с процессами фокальной, внимательной обработки, ведущими к детальному восприятию и идентификации предметов. Эти процессы вовлекают в основном регионы височных долей, расположенные ниже и несколько спереди от теменных долей коры. Этот «вентральный поток» переработки информации, с одной стороны, контактирует с гиппокампом и его окружением, а с другой — со структурами, обеспечивающими восприятие и порождение речи (см. 7.1.1). Перцептивная обработка опирается здесь не только на сенсорную информацию, но и на семантическую память и одновременно сама служит основой для формирования фиксируемых в памяти репрезентаций отдельных ситуаций и эпизодов. Таким образом, вентральный поток оказывается идеальным субстратом для того, что было названо выше «восприятие для познания». Основные признаки двух зрительных систем приведены в табл. 3.3. Аналогичное разделение, как отмечалось, может быть проведено сегодня также по отношению к подсистемам слухового восприятия. О связях височных долей с когнитивными механизмами говорят нарушения, возникающие при их поражениях, среди которых, наряду с апперцептивной агнозией (агнозия на форму или объектная агнозия — нарушение узнавания предметов), встречаются также ассоциативная агнозия (неспособность семантически категоризовать предмет, форма которого, судя по зарисовкам, воспринимается), оптическая афазия (неспособность назвать предмет при сохранности практического знания о его применении) и категориально-специфическая агнозия. В последнем случае речь запоминание характерно также для аффективной информации (см. 5.3.2). Исследования восприятия боли свидетельствуют о том, что и в этом случае оценки интенсивности ощущений не опираются на процессы суммирования во времени. Хирургическая операция, продолжавшаяся лишь 6 минут, может, быть оценена как более болезненная, чем операция, занявшая 66 минут, если некоторое одиночное пиковое состояние боли в первом случае оказалось выше, чем каждый из нескольких пиковых состояний и в целом более 242 высокий болевой фон во втором (Kahneman et al., 1993).
Таблица 3.3. Две зрительные системы — перечень контрастирующих признаков (по: \felichkovskyetal., 2005)
идет о нарушениях узнавания объектов, входящих в определенную семантическую категорию — инструментов, животных или хорошо знакомых лиц. Подобные нарушения возникают при повреждении разных участков нижневисочных отделов коры. Следует отметить, что некоторые из этих, связанных с поражениями височных долей, нарушений предметного восприятия частично компенсируются в ходе осуществляемых с ними действий. Наблюдения за пациентами с агнозией на форму показывают, что иногда они могут демонстрировать рудиментарное восприятие формы в ходе практических манипуляций с предметами. Так, при инструкции взять предмет, форму которого пациентка не в состоянии определить, она, тем не менее, может иногда правильно адаптировать пальцы подводимой к предмету руки (Milner & Goodale, 1995). Такое различение формы (или, скорее, общих очертаний), однако, оказывается ограниченным, не позволяющим учитывать внутреннюю геометрию предмета (Dijkerman, Milner & Carey, 1998). Этот вопрос продолжает в настоящее время дискутироваться, так как теменные области, безусловно, в основном специализированы на обследовании пространственного окружения и локализации объектов. В особенности структуры, расположенные в их верхних медианных зонах (близких к продольной борозде, разделяющей левое и правое полушарие), демонстрируют поданным функционального картирования мозга повышенную активацию при широком, «амбьентном» обследовании окружения. Селективное — фокальное — внимание к дета-. лям, цвету и форме предметов вызывает подавление такой активации (Raichle, 1998).
243 Анализ случаев агнозии на форму показывает, что нарушения высших форм восприятия оставляют относительно сохранными более элементарные процессы пространственного восприятия. Интересно, что обратное скорее неверно — поражения затылочных долей часто ведут к массивным нарушениям восприятия формы и узнавания. Эти нарушения известны в нейропсихологической литературе как симулътаноагно- ' зия и синдром Балинта11. В всех этих случаях пациенты не могут интегрировать отдельные детали в целостный образ и неспособны увидеть более одного объекта в относительно простой их комбинации (по принципу «либо серп, либо молот» при восприятии старого советского герба, включавшего изображения серпа и молота). Типичны, впрочем, как раз попытки угадать по отдельным деталям целое — пациент видит круглые дуги рукояток ножниц и заявляет, что видит очки. Видимый мир как бы распадается на отдельные детали. А.Р. Лурия оставил классическое описание этих нарушений в эссе о «человеке с раздробленным миром», а один из наиболее ярких его последователей, американский нейропсихолог Оливер Закс описал в своих работах «человека, спутавшего свою жену со шляпой» (проблемы этого пациента, правда, осложнялись также выраженной прозопагнозией, то есть нарушенным узнаванием лиц — см. 3.3.1). Приведенные данные говорят об уровневых взаимоотношениях между механизмами восприятия пространственного положения (уровень С) и восприятия предметов (уровень D). Подобные взаимоотношения наблюдаются при восприятии событий, когда развертывание познавательной активности осуществляется в режиме «снизу вверх». В этих случаях говорят также об использовании непроизвольного внимания (см. 4.4.1). Но вовлечение механизмов восприятия в работу часто происходит в противоположном направлении, так сказать «сверху вниз» (или в порядке «обратной иерархии», reverse hierarchy — Hochstein & Ahissar, 2002). Это типично для задач активного поиска, связанных, как принято говорить в психологии, с использованием произвольного внимания (см. 4.4.2). В чисто временном аспекте работа с информацией об индивидуальном предмете (скажем, «будильник?») может предшествовать тогда процессам пространственной локализации («на ночном столике»). Пространственный поиск может легко управляться и абстрактной семантической информацией более высокого уровня Ε (например, при поиске «посуды»), а даже иметь ситуативно-творческий характер, включающий элементы мышления (уровень F — см. 8.4.3). Так, пытаясь найти «то, что можно положить под проектор», можно значительно облегчить себе задачу, если
37 У полностью здоровых людей резкое сужение размеров функционального поля зрения, или феномен туннельного зрения, наблюдается при высокой степени эмоционального стресса. Возможно, туннельное зрение объясняется связью дорзальной системы коры (и, следовательно, амбьентного восприятия) с базальными ганглиями, участвующими в 244 регуляции эмоций и стресса и крайне чувствительными к ним (см. 9.4.3). догадаться, что любая достаточно толстая и раскрытая соответствующим образом книга легко послужит такой подставкой. Различение уровней восприятия имеет большое практическое значение и за пределами нейропсихологии. Поскольку в условиях слабой освещенности избирательно затрудняется идентификация предметов и событий, тогда как широкое амбьентное восприятие, связанное с ориентацией в пространстве и управлением собственными движениями, может оставаться относительно сохранным, у водителей возникает опасная иллюзия отсутствия каких-либо существенных изменений способности управлять автомобилем в сумерках и скорость движения обычно не снижается. Если при этом внезапно возникает задана идентифика ции — тени, припаркованной машины или пешехода, водитель может не справиться с ее решением. Число аварий со смертельным исходом в сумерках примерно в 4 раза больше, чем при дневном освещении. Характерно, что в этих условиях примерно 25% водителей, только что сбивших пешехода, утверждают, что вообще никого на дороге не видели38. Разделение двух уровней (или модусов) зрительной переработки информации справедливо рассматривается в прикладной психологии как «скрытый фактор-убийца», ответственный за высокий процент серьезных аварий в ночное время (Leibowitz, 1996). В самое последнее время появились новые возможности лабораторного исследования восприятия и поведенческих ответов на внезапную опасность. Этот вопрос имеет давнюю историю. На заре научной психологии Уильям Джеймс иллюстрировал восприятие опасности случаем внезапной встречи с медведем в лесу. Примерно в том же плане, но уже экспериментально один из основателей современной когнитивной нейропсихологии Дональд Хэбб исследовал реагирование высших приматов на змею. Конечно, в современном урбанизированном мире эти примеры носят скорее воображаемый характер. Большинство угрожающих нам опасностей имеют техногенное происхождение, и среди них выделяются те, которые возникают при автомобильном движении. Достаточно сказать, что только на дорогах России ежегодно гибнет население среднего по величине города, а США потеряли в автодорожных катастрофах больше людей, чем во всех войнах своей истории. Для того чтобы экспериментально изучать поведение человека в ситуации опасности, нужно найти некоторый компромисс между воображением и реальностью. Таким компромиссом является упоминавшаяся выше технология виртуальной реальности. В одном из экспериментов мы 38 Надо сказать, что имеются два других фактора, вносящих вклад в эту статистику.
246 Рис. 3.25. Две потенциально опасные ситуации в экспериментах с поездками по виртуальному городу А Перекресток со светофором, Б Пешеход на краю дороги (по" Velichkovsky et al, 2002b). создали в нашей лаборатории условия, при которых можно было длительное время «ездить» при дневном освещении по довольно реалистическому виртуальному городу, время от времени попадая в различные непростые ситуации. Рис. 3.25 показывает два потенциально опасных эпизода — приближение к перекрестку со светофором (А) и пешехода, стоящего на краю дороги (Б). Каждая из подобных потенциальных опасностей могла внезапно превратиться в непосредственную угрозу, когда у самого перекрестка зеленый свет менялся на красный или же пешеход начинал быстро переходить дорогу. Кроме таких опасных событий, зрительное окружение испытуемых постоянно изменялось: в зависимости от скорости (то есть от нажатия ногой на соответствующую педаль) усиливалось или замедлялось оптическое «разбегание» видимой панорамы, по дорогам ездили другие автомобили (иногда по той же полосе," но на приличном расстоянии), а другие пешеходы двигались по пешеходным дорожкам независимо от дорожной ситуации. Вся эта «жизнь» находилась под контролем нескольких связанных между собой компьютеров. Более того, миниатюрные телекамеры с высокой скоростью и точностью непрерывно регистрировали движения головы и глаз водителя. Нас интересовало, как водитель и его глаза реагируют на оба класса опасных событий. Следующий вопрос состоял в том, насколько стабильными эти реакции остаются во времени. В самом деле, после классических работ психофизиолога E.H. Соколова (подробно изучившего ориентировочный рефлекс, возникающий в ответ на неожиданное изменение ситуации — см. 4.4.1) хорошо известно, что многие реакции организма, связанные с ориентировкой в окружении, могут постепенно ослабевать и даже практически полностью угасать. Чтобы ответить на эти вопросы, мы попросили 12 опытных водителей в течение 5 последовательных недель «ездить» по одному и тому же виртуальному маршруту. «Статические» компоненты окружения при этом оставались неизменными, все динамические события были более или менее случайными. Каждая такая поездка продолжалась примерно
-4-3-2-1 0 2 3 4 5 -4-3-2-1012345
Рис. 3.26. Изменение продолжительности зрительных фиксаций до, в момент и после возникновения опасного события в случаях успешного реагирования А. Красный свет светофора, Б Переходящий улицу пешеход (по. Velichkovsky et al., 2002b). 40 мин. Рис. 3.26 показывает динамику продолжительности зрительных фиксаций непосредственно до (4 фиксации), в момент (эта фиксация обозначена «0») и сразу после критического события во всех тех случаях, когда водители успешно тормозили или объезжали (эпизоды с пешеходом) опасность. Три горизонтальные линии соответствуют референтным (baseline) порогам 5, 50 и 95% средних продолжительностей фиксаций на различных участках поездок, не содержавших опасные эпизоды. Легко видеть, что оба класса критических событий вызывают мощную и единообразную реакцию удлинения фиксации, причем эта реакция совершенно не угасает со временем. Относительно продолжительные фиксации после события (от +1 до +3) коррелируют с произвольными движениями, в данном случае нажатием на педаль торможения. Особенно интересны те чрезвычайно редкие случаи (< 1%), когда водители не успевают отреагировать на острую опасность, пересекая перекресток на красный свет (N = 12; рис. 3.27А) или проезжая сквозь идущего пешехода (N = 9; рис. 3.27Б). Эти ошибки не могут быть объяснены недостатком времени на принятие решения, так как скорость обычно была даже несколько ниже нормативных (и достаточных) 50 км/час. Нельзя их объяснить и различиями оптических условий — на самом деле, совершая ошибки, водители часто прямо смотрели на светофор или на пешехода. Поскольку число таких наблюдений было столь незначительным, традиционный статистический анализ был невозможен. Однако его вполне заменяет прямое сравнение с референтными пороговыми значениями: продолжительность фиксаций в момент опасности явно превышает порог 95%, особенно для более драматического эпизода с пешеходом. Единственное реальное отличие по сравнению с данными, когда водители правильно реагировали на опасность, состоит в том, что при ошибочных ответах критическому событию предшествуют две-три короткие фиксации, продолжительность которых оказывается на уровне или ниже порога 5%. 247
-4-3-2-10 1 2 3 4 5 -4-3-2-1012345
248 Рис. 3.27. Продолжительность фиксаций до, в момент и после возникновения опасного события в случаях совершения ошибки:'А. Проезд перекрестка на красный свет; Б. Наезд на пешехода (по: Velichkovsky et al., 2002b). Почему эти непосредственно предшествующие опасному событию фиксации ассоциируются с ошибками? Для ответа на этот вопрос нужно вернуться к рассмотренным выше данным о возможной связи между длительностью фиксации и уровнем обработки (см. 3.4.1). Фиксации, непосредственно предшествующие ошибкам, имеют длительность порядка 200 мс и, следовательно, принадлежат сегменту ам-бьентного восприятия. В случае адекватных реакций фиксации перед критическим событием с их средней длительностью около 400 мс свидетельствуют о фокальном, или внимательном, анализе ситуации. Причина ошибок состоит, видимо, именно в переключении с фокальной на преимущественно амбьентную обработку. Такие переключения, могут кратковременно наблюдаться и при рассматривании картин Рембрандта, но в условиях дорожного движения они дополнительно провоцируются постоянными изменениями видимого окружения — появлением новых объектов, изменением их взаимного положения и т.д. Водители не успевают своевременно идентифицировать опасность, поскольку критические события случаются во время перцептивной обработки, задачей которой является нечто другое, прежде всего общая пространственная ориентация. Эти новые данные позволяют надеяться на возможность ранней диагностики эпизодов с высокой вероятностью ошибки и на ее использование для адаптивной технической поддержки водителя (см. 7.4.3). 3.4.3 Развитие и специализация восприятия Исследования раннего онтогенеза восприятия относятся к числу наиболее увлекательных глав экспериментальной психологии, нейрофизиологии и философии. Длительное время именно философские позиции определяли характер ведущихся по этой проблеме дискуссий. Эмпирицисты, прежде всего Джордж Беркли, выдвинули тезис о полной неорганизованности ранних сенсорных впечатлений младенца, которые упорядочиваются только в ходе их ассоциации с моторными ощущениями. Эта точка зрения особенно сильно повлияла на психологию. В 19-м веке ее разделяли Гельмгольц и Джеймс, который писал, что окружающий мир представляет собой для новорожденного «blooming boozing confusion» (читатели, знающие английский язык, могут попытаться перевести это замечательное определение сами). Жан Пиаже — крупнейший специалист прошедшего столетия в области психологии развития — также по сути дела солидаризировался с данной точкой зрения. Он, в частности, высказал предположение, что до опыта двигательных манипуляций с предметами у младенца нет их восприятия как некоторых объективных, независимых от него сущностей. Во всех этих пунктах противоположной (и первоначально столь же малодоказательной) точки зрения придерживались представители направлений, тяготеющих к кантианскому рационализму (гештальтпсихо-логия) и к прямому реализму (экологический подход Гибсона). Философским основанием для отрицания роли эмпирического, в частности двигательного, опыта в процессах восприятия были взгляды Канта на априорный, то есть существующий до всякого опыта характер наиболее общих категорий нашего рассудка, таких как пространство и время (см. 1.1.3). Когнитивные исследования восприятия впервые позволили проверить справедливость этих взглядов на природу ранних перцептивных достижений. При проведении подобных исследований приходится целиком опираться на косвенные, поведенческие и физиологические индикаторы восприятия. Большое значение имеют также сравнительные, в том числе и нейрофизиологические эксперименты на животных. Все эти источники говорят о том, что сенсорные возможности новорожденного сильно редуцированы — очень низка острота слуха и зрения, нет восприятия цвета, нет и достаточной бинокулярной координации, которая развивается в течение первых 6 недель жизни39. Наконец, предельно ограниченными длительное время остаются сенсомоторные возможности, 39 Тем не менее, по-видимому, возможна очень ранняя, в первые недели после рожде так что, например, устойчивое схватывание предмета наблюдается начиная примерно с 4 месяцев. Вместе с тем, экспериментальные данные отнюдь не подтверждают тезис о полной неорганизованности самых первых восприятий. Напротив, вырисовывающаяся картина свидетельствует о поразительной перцептивной компетентности младенца уже в первые дни и недели жизни, особенно в отношении интермодального восприятия пространственного положения объектов. В одном из экспериментов Джером Брунер и Барбара Козловска показывали младенцам в возрасте 3 недель на различном расстоянии яркие цветные предметы, которые отличались размером. Хотя в этом возрасте устойчивое схватывание объекта еще невозможно, исследователи обнаружили повышенную моторную активность в плечевом поясе при предъявлении именно тех предметов, размеры и удаленность которых позволяли бы их схватить тремя месяцами позже. В другой известной работе был проведен анализ того, как младенцы этого же возраста реагируют на совпадающую и на противоречивую интермодальную информацию о пространственном положении. Если при приближении лица матери младенец слышал ее голос в совершенно другом направлении, это приводило к изменению обычно положительной эмоциональной реакции, о чем можно было судить по учащению ритма сердцебиений. Ученик Гибсона Томас Бауэр (1981) провел эксперименты, в которых попытался прямо проверить предположение Пиаже о первоначальном солипсизме восприятия младенца. В этой работе ребенку в возрасте до 4 месяцев показывалась яркая игрушка. После того как становилось ясно, что игрушка замечена и вызвала интерес, она на глазах у малыша помещалась за стоящий перед ним непрозрачный экран. Исходный феномен, описанный Пиаже, состоит в том, что при этом младенец теряет интерес к игрушке и не предпринимает попыток ее достать. Это наблюдение, конечно, может говорить о том, что предмет, исчезающий из поля зрения младенца, перестает для него существовать. Возможными остаются, однако, и другие объяснения, например, что поведение ребенка обусловлено слабостью его сенсомоторных возможностей, а не отсутствием знания о постоянстве существования предмета. Поэтому Бауэр продолжил эксперимент. Через короткий интервал после исчезновения игрушки (интервал был коротким, чтобы не тестировать память вместо восприятия) экран поднимался и ребенок мог видеть либо игрушку, либо пустое место. Если бы ребенок не знал о продолжении существования предмета вне его восприятия, появление игрушки должно было бы вызвать у него реакцию удивления. Если же предметы субъективно существуют независимо от актуального восприятия, то удивление должно было бы вызвать отсутствие игрушки за экраном. Именно этот последний результат и был получен в эксперименте40. 40 В качестве показателей удивления в этих и аналогичных экспериментах использовались психофизиологические признаки ориентировочной реакции, которая будет рассмот-250 рена в следующей главе (см. 4.4.1).
старт Рис. 3.28. Траектории движений глаз младенца при рассматривании лица: А. Первые 2—3 недели жизни; Б. От 4 недель и старше. Таким образом, многое в восприятии представляется врожденным, причем в плане самых общих категорий, таких как интермодальное пространство и постоянство существования предметов. Чувствительность к нюансам в пространственной области сочетается со слабостью в восприятии формы. В самом деле, регистрация движений глаз показывает, что в первые недели жизни младенец фиксирует лишь наиболее заметные элементы внешних очертаний предметов и лиц (рис. 3.28). Поэтому предмет, положенный на другой предмет, несколько больших размеров перестает им восприниматься41. Даже когда к концу первого месяца жизни младенец начинает фиксировать внутренние детали обращенного к нему лица, его интерес привлекают прежде всего глаза — независимо от того, сколько глаз находится на лице и как они распределены по его поверхности. Это заставляет сделать вывод, что описанная в предыдущих разделах этой главы дорзальная система восприятия (уровень С, без его моторных компонентов) в большей степени готова к функцио-
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|