Критерий для зависимых выборок.
Внутригрупповая вариация. Cтепень различия между средними в двух группах зависит от внутригрупповой вариации (дисперсии) переменных. В зависимости от того, насколько различны эти значения для каждой группы, "грубая разность" между групповыми средними показывает более сильную или более слабую степень зависимости между независимой (группирующей) и зависимой переменными. Например, если среднее WCC (число лейкоцитов - White Cell Count) равнялось 102 для мужчин и 104 для женщин, то разность внутригрупповых средних только на величину 2 будет чрезвычайно важной, когда все значения WCC мужчин лежат в интервале от 101 до 103, а все значения WCC женщин - в интервале 103 - 105. В этом случае можно довольно хорошо предсказать WCC (значение зависимой переменной) исходя из пола субъекта (независимой переменной). Однако если та же разность 2 получена из сильно разбросанных данных (например, изменяющихся в пределах от 0 до 200), то этой разностью вполне можно пренебречь. Таким образом, можно сказать, что уменьшение внутригрупповой вариации увеличивает чувствительность критерия. Цель. t-критерий для зависимых выборок очень полезен в тех довольно часто возникающих на практике ситуациях, когда важный источник внутригрупповой вариации (или ошибки) может быть легко определен и исключен из анализа. Например, это относится к экспериментам, в которых две сравниваемые группы основываются на одной и той же совокупности наблюдений (субъектов), которые тестировались дважды (например, до и после лечения, до и после приема лекарства). В подобных экспериментах значительная часть внутригрупповой изменчивости (вариации) в обеих группах может быть объяснена индивидуальными различиями субъектов. Заметим, что на самом деле, такая ситуация не слишком отличается от той, когда сравниваемые группы совершенно независимы, где индивидуальные отличия также вносят вклад в дисперсию ошибки. Однако в случае независимых выборок, вы ничего не сможете поделать с этим, т.к. не сможете определить (или "удалить") часть вариации, связанную с индивидуальными различиями субъектов. Если та же самая выборка тестируется дважды, то можно легко исключить эту часть вариации. Вместо исследования каждой группы отдельно и анализа исходных значений, можно рассматривать просто разности между двумя измерениями (например, "до приема лекарства" и "после приема лекарства") для каждого субъекта. Вычитая первые значения из вторых (для каждого субъекта) и анализируя затем только эти "чистые (парные) разности", вы исключите ту часть вариации, которая является результатом различия в исходных уровнях индивидуумов. Именно так и проводятся вычисления в t-критерии для зависимых выборок. В сравнении с t-критерием для независимых выборок, такой подход дает всегда "лучший" результат (критерий становится более чувствительным).
Предположения. Теоретические предположения t-критерия для независимых выборок относятся также к критерию для зависимых выборок. Это означает, что попарные разности должны быть нормально распределены. Если это не выполняется, то можно воспользоваться одним из альтернативных непараметрических критериев. Расположение данных. Вы можете применять t-критерий для зависимых выборок к любой паре переменных в наборе данных. Заметим, применение этого критерия мало оправдано, если значения двух переменных несопоставимы. Например, если вы сравниваете среднее WCC в выборке пациентов до и после лечения, но используете различные методы вычисления количественного показателя или другие единицы во втором измерении, то высоко значимые значения t-критерия могут быть получены искусственно, именно за счет изменения единиц измерения. Следующий набор данных может быть проанализирован с помощью t-критерия для зависимых выборок.
Средняя разность между показателями в двух столбцах относительно мала (d=1) по сравнению с разбросом данных (от 80 до 143, в первой выборке). Тем не менее t-критерий для зависимых выборок использует только парные разности, "игнорируя" исходные численные значения и их вариацию. Таким образом, величина этой разности 1 будет сравниваться не с разбросом исходных значений, а с разбросом индивидуальных разностей, который относительно мал: 0.2 (от 0.9 в наблюдении 5 до 1.1 в наблюдении 1). В этой ситуации разность 1 очень большая и может привести к значимому t-значению. Непараметрические критерии: 1. Q-критерий Розенбаума — простой непараметрический статистический критерий, используемый для оценки различий между двумя выборками по уровню какого-либо признака, измеренного количественно. Мощность критерия не очень велика. В том случае, когда если он не выявляет различий, можно обратиться к другим статистическим критериям, например, к U-критерию Манна-Уитни или критерию φ* Фишера. Данные для применения Q-критерия Розенбаума должны быть представлены хотя бы в порядковой шкале. Признак должен измеряться в значительном диапазоне значений (чем более значительном – тем лучше). Ограничения применимости критерия 1. В каждой из выборок должно быть не менее 11 значений признака. 2. Объемы выборок должны примерно совпадать. 1. Если объемы выборок меньше 50, то абсолютная величина разности n1 (количество единиц в первой выборке) и n2 (количество единиц во второй выборке) не должна быть больше 10. 2. Если объемы выборок между 50 и 100, то абсолютная величина разности n1 и n2 не должна быть больше 20; 3. Если объемы выборок больше 100, то допускается, чтобы одна из выброк превышала другую не более чем в 1,5 – 2 раза. 3. Диапазоны значений признака в двух выборках не должны совпадать между собой.
Использование критерия Для применения Q-критерия Розенбаума нужно произвести следующие операции. 1. Упорядочить значения отдельно в каждой выборке по степени возрастания признака; принять за первую выборку ту, значения признака в которой предположительно выше, а за вторую – ту, где значения признака предположительно ниже. 2. Определить максимальное значение признака во второй выборке и подсчитать количество значений признака в первой выборке, которые больше его (S1). 3. Определить минимальное значение признака в первой выборке и подсчитать количество значений признака во второй выборке, которые меньше его (S2). 4. Рассчитать значение критерия Q = S1 + S2. 5. По таблице определить критические значения критерия для данных n1 и n2. Если полученное значение Q превышает табличное или равно ему, то признается наличие существенного различия между уровнем признака в рассматриваемых выборках (принимается альтернативная гипотеза). Если же полученное значение Q меньше табличного, принимается нулевая гипотеза. Различия между двумя выборками достоверны с вероятностью 95% при p=0,05 и с вероятностью 99% при p=0,01. Для выборок, в которых больше чем 26 элементов, критические значения Q принимаются равными 8 (при p=0,05) и 10 (при p=0,01). 2. U-критерий Манна-Уитни (англ. Mann-Whitney U test) — непараметрический статистический критерий, используемый для оценки различий между двумя выборками по уровню какого-либо признака, измеренного количественно. Позволяет выявлять различия в значении параметра между малыми выборками. Другие названия: критерий Манна-Уитни-Уилкоксона (англ. Mann-Whitney-Wilcoxon, MWW), критерий суммы рангов Уилкоксона (англ. Wilcoxon rank-sum test) или критерий Уилкоксона-Манна-Уитни (англ. Wilcoxon-Mann-Whitney test). Простой непараметрический критерий. Мощность критерия выше, чем у Q-критерия Розенбаума. Этот метод определяет, достаточно ли мала зона перекрещивающихся значений между двумя рядами (ранжированным рядом значений параметра в первой выборке и таким же во второй выборке). Чем меньше значение критерия, тем вероятнее, что различия между значениями параметра в выборках достоверны.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|