Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Вывод уравнения Бернулли для элементарной струйки и целого потока.




Уравнение Бернулли для элементарной струйки идеальной жидкости

 

Уравнение Бернулли для элементарной струйки реальной жидкости

Уравнение Бернулли для потока реальной жидкости

 

22.ИНТЕРПРЕТАЦИЯ УРАВНЕНИЯ БЕРНУЛИ Все члены уравнения Бернулли имеют линейную размерность и представляют собой напоры:

z - называется геометрическим напором (геометрической высотой), представляет собой место положения центра тяжести живого сечения элементарной струйки относи­тельно плоскости сравнения,

- называется пьезометрическим напором (пьезометрической высотой) представляет собой высоту, на которую могла бы подняться жидкость при отсутствии движения

- носит название скоростного напора.

- носит название гидродинамического напора

Уравнение Бернулли является выражением закона сохранения механической энер­гии движущейся жидкости, по этой причине все части уравнения представляют собой ве­личины удельной энергии жидкости: z - удельная энергия положения, - удельная энергия давления, - удельная потенциальная энергия, - удельная кинетическая энергия

- удельная механическая энергия.

 

23. Характеристика ламинарного режима движения.

Стокса формула имеет вид:
,
причём направление обхода контура L должно быть согласовано с ориентацией поверхности S. В векторной форме Стокса формула приобретает вид:

, где а = Pi + Qj + Rk, dr — элемент контура L, ds — элемент поверхности S, n —единичный вектор внешней нормали к этой поверхности. Формула Пуазейля.При установившемся ламинарном движении вязкой несжимаемой жидкости сквозь цилиндрическую трубу круглого сечения секундный объёмный расход прямо пропорционален перепаду давления на единицу длины трубы и четвертой степени радиуса и обратно пропорционален коэффициенту вязкости жидкости.

где

  • — перепад давления на концах капилляра, Па;
  • — секундный объёмный расход жидкости, м³/с;
  • — радиус капилляра, м;
  • — диаметр капилляра, м;
  • — коэффициент динамической вязкости, Па·с;
  • — длина трубы, м.

Формула Дарси –Вейсбаха где

  • — потери напора на гидравлическом сопротивлении;
  • — коэффициент потерь (коэффициент Дарси);
  • — средняя скорость течения жидкости;
  • — ускорение свободного падения;
  • величина называется скоростным (или динамическим) напором.

Формула Вейсбаха, определяющая потери давления на гидравлических сопротивлениях, имеет вид:

где — потери давления на гидравлическом сопротивлении; ρ— плотность жидкости.

Если гидравлическое сопротивление представляет собой участок трубы длиной и диаметром , то коэффициент Дарси определяется следующим образом:

где — коэффициент потерь на трение по длине.

Тогда формула Дарси приобретает вид: или для потери давления:

24.Характеристика турбулентного режима движения. По характеру движения частицы жидкости в турбулентном потоке ведут себя примерно так, как молекулы в представлении кинетической теории газов: они находятся в состоянии беспорядочного хаотического движения. В случае, например, трубопроводов с этим связано существенное возрастание потерь энергии при движении жидкости по сравнению с ламинарным потоком. В турбулентном режиме происходит выравнивание эпюры распределения скоростей по сечению потока. С турбулентным движением связано так же усиление теплопередачи внутри жидкости. Перемешивание определяется наличием в турбулентном потоке уже упомянутых выше, перпендикулярных основному направлению движения жидкости составляющих скоростей. Перемешивание в турбулентно движущейся жидкости приводит к взвешиванию находящейся в потоке в дисперсном состоянии фракции другой фазы (твердые, газообразные и т. п.). Турбулентное движение по самой своей сущности является движением неустановившимся; все гидравлические характеристики и, в частности, скорости в каждой точке занятого турбулентным потоком пространства изменяются с течением времени. Таким образом, турбулентное движение можно определить как движение жидкости с пульсацией скоростей, приводящей к перемешиванию жидкости.

25. Если высота выступов шероховатости Δ меньше, чем толщина ла­минарной пленки (Δ <δ), то в этом случае шероховатость стенок не влияет на характер движения и соответственно потери напора не зави­сят от шероховатости, а стенки называются гидравлически гладкими. Когда высота выступов шероховатости превышает толщину лами­нарной пленки (Δ <δ), то потери напора зависят от шероховатости, и такие трубы называются гидравлически шероховатыми.

26. Формулы для определения коэффициента сопротивления трения по длине.

Формула Шези — формула для определения средней скорости потока при установившемся равномерном турбулентном движении жидкости в области квадратичного сопротивления для случая безнапорного потока. Опубликована французским инженером-гидравликом А. Шези в 1769 году. Применяется для расчётов потоков в речных руслах и канализационых системах. V=C , где V — средняя скорость потока, м/с; C — коэффициент сопротивления трения по длине (коэффициент Шези), являющийся интегральной характеристикой сил сопротивления; R — гидравлический радиус, м;

I — гидравлический уклон м/м. Формула Шези имеет то же предназначение, что и формула Дарси-Вейсбаха. Коэффициент потерь на трение связан с коэффициентом сопротивления C следующей зависимостью:

C=

Коэффициент сопротивления C может быть определён по формуле Н. Н. Павловского:

C= где n — коэффициент шероховатости

 

31. Последовательное и параллельное соединение трубопроводов.

Основным элементом любой трубопроводной системы, какой бы сложной она ни была, является простой трубопровод. Классическим определением его будет - простым трубопроводом является трубопровод, собранный из труб одинакового диаметра и качества его внутренних стенок, в котором движется транзитный поток жидкости, и на котором нет местных гидравлических сопротивлений. При напорном движении жидкости простой трубопровод работает полным сечением.

Размер сечения трубопровода (диаметр или величина гидравлического радиуса), а также его протяжённость (длина) трубопровода (/, L) являются основными геометрическими характеристиками трубопровода. Основными технологическими характеристиками трубопровода являются расход жидкости в трубопроводе Q и напор H(на головных сооружениях трубопровода, т.е. в его начале). Большинство других характеристик простого трубопровода являются, не смотря на их важность, производными характеристиками. Поскольку в простом трубопроводе расход жидкости транзитный (одинаковый в начале и конце трубопровода), то средняя скорость движения жидкости в трубопроводе постоянна V=const. Для установившегося движения жидкости по трубопроводу средняя скорость движения жидкости определяется по формуле Шези:

где: - скоростной коэффициент Шези,

- гидравлический радиус сечения, для круглого сечения при полном заполнении жидкостью

- гидравлический уклон. Полагая, что весь имеющийся напор на головных сооружениях (в начале) трубопровода тратится на преодоление сил трения в трубопроводе (в простом трубопроводе это потери напора по длине ), уравнение движения жидкости (Бернулли) примет вид:

График уравнения простого трубопровода носит название его гидравлической характеристики. Вид гидравлической характеристики зависит от режима движения жидкости в трубопроводе: при ламинарном движении жидкости гидравлическая характеристика трубопровода - прямая линия, проходящая через начало координат. При турбулентном режиме гидравлическая характеристика - парабола.

Параллельное соединение.

Отличительной особенностью таких трубопроводов является то, что поток жидкости делится в одной точке на несколько самостоятельных потоков, которые позже сходятся в другой точке. Каждый из этих потоков может содержать свои местные сопротивления. Наиболее часто возникающей задачей, связанной с расчётом таких трубопроводов, является определение расхода в каждой ветви. Рассмотрим движение жидкости по этим трубопроводам, считая, что потенциальная энергия положения много меньше потенциальной энергии сжатия, которая определяется давлением, и ею можно пренебречь. Если считать, что в местах разветвления и соединения трубопроводов, обозначенных буквами н и к, расход одинаков, а давления равны Pн и Pк, то можно записать: Q= + +

Особенность расчета заключается в том, что потери напора в каждой из линий одинаковы и равны разности напоров в узлах а и б.

h1= h2 = h3 =... = hn = hA - hB=H

Расход через любую из линий, соединяющих точки А и В, может быть записан в виде: =

Так как сумма расходов во всех параллельных трубопроводах равна расходу Q до разветвления трубопровода

+ + +…+ = =Q; Q=

 

 

32. Насосная раздача.

Трубопровод с насосной подачей жидкости может быть разомкнутым, т.е. по которому жидкость перекачивается из одной емкости в другую, или замкнутым (кольцевым), в котором циркулирует одно и то же количество жидкости.

Рассмотрим трубопровод, по которому перекачивают жидкость из нижнего резервуара с давлением P 0 в другой резервуар с давлением P3. Высота расположения оси насоса H1 называется геометрической высотой всасывания, а трубопровод, по которому жидкость поступает к насосу, всасывающим трубопроводом или линией всасывания. Высота расположения конечного сечения трубопровода H2 называется геометрической высотой нагнетания, а трубопровод, по которому жидкость движется от насоса, напорным или линией нагнетания. Составим уравнением Бернулли для потока рабочей жидкости во всасывающем трубопроводе, т.е. для сечений 0-0 и 1-1 (принимая α = 1):

Это уравнение является основным для расчета всасывающих трубопроводов.

Теперь рассмотрим напорный трубопровод, для которого запишем уравнение Бернулли, т.е. для сечений 2-2 и 3-3:

Левая часть этого уравнения представляет собой энергию жидкости на выходе из насоса. А на входе насоса энергию жидкости можно будет аналогично выразить из уравнения:

Таким образом, можно подсчитать приращение энергии жидкости, проходящей через насос. Эта энергия сообщается жидкости насосом и поэтому обозначается обычно Hнас.

Для нахождения напора Hнас вычислим уравнение:

где Δz - полная геометрическая высота подъема жидкости, Δz = H 1 + H2; КQm - сумма гидравлических потерь,

P3 и Р0 - давление в верхней и нижней емкости соответственно.

Если к действительной разности уровней Δz добавить разность пьезометрических высот (P3 - Р0) (ρg), то можно рассматривать увеличенную разность уровней

и формулу можно переписать так: Hнас = Hст + KQm Из этой формулы делаем вывод, что Hнас = Hпотр

Отсюда вытекает следующее правило устойчивой работы насоса: при установившемся течении жидкости в трубопроводе насос развивает напор, равный потребному. Характеристикой насоса называется зависимость напора, создаваемого насосом, от его подачи (расхода жидкости) при постоянной частоте вращения вала насоса.

 

34. Гидравлический удар в трубах. Расчетные формулы.

Гидравлический удар (гидроудар) — скачок давления в какой-либо системе, заполненной жидкостью, вызванный крайне быстрым изменением скорости потока этой жидкости за очень малый промежуток времени. Может возникать вследствие резкого закрытия или открытия задвижки. В первом случае гидроудар называют положительным, во втором - отрицательным. Опасен положительный гидроудар. При положительном гидроударе несжимаемую жидкость следует рассматривать как сжимаемую. Гидравлический удар способен вызывать образование продольных трещин в трубах, что может привести к их расколу, или повреждению других элементов трубопровода. Также гидроудары чрезвычайно опасны и для другого оборудования, такого как теплообменники, насосы и сосуды, работающие под давлением. Для предотвращения гидроударов, вызванных резкой переменой направления потока рабочей среды, на трубопроводах устанавливаются обратные клапаны.

Гидроударом также ошибочно называют следствие заполнения надпоршневого пространства в поршневом двигателе водой, вследствие чего поршень, не дойдя до мёртвой точки, начинает сжимать жидкость, что приводит к внезапной остановке и поломке мотора (излому шатуна или штока, обрыву шпилек головки цилиндра, разрыву прокладки).

Увеличение давления при гидравлическом ударе определяется в соответствии с его теорией по формуле:

, где — увеличение давления в Н/м², ρ — плотность жидкости в кг/м³, и — средние скорости в трубопроводе до и после закрытия задвижки (запорного клапана) в м/с; с — скорость распространения ударной волны вдоль трубопровода. Жуковский доказал, что скорость распространения ударной волны c находится в прямо пропорциональной зависимости от сжимаемости жидкости, величины деформации стенок трубопровода, определяемой модулем упругости материала E, из которого он выполнен, а также от диаметра трубопровода. Следовательно, гидравлический удар не может возникнуть в трубопроводе, содержащем газ, так как газ легко сжимаем. Зависимость между скоростью ударной волны c, её длиной и временем распространения (L и Ƭ соответственно) выражается следующей формулой:

В зависимости от времени распространения ударной волны и времени перекрытия задвижки (или другой запорной арматуры) t, в результате которого возник гидроудар, можно выделить 2 вида ударов: Полный (прямой) гидравлический удар, если t < Ƭ Неполный (непрямой) гидравлический удар, если t. > Ƭ При полном гидроударе фронт возникшей ударной волны движется в направлении, обратном первоначальному направлению движения жидкости в трубопроводе. Его дальнейшее направление движения зависит от элементов трубопровода, расположенных до закрытой задвижки. Возможно и повторное неоднократное прохождения фронта волны в прямом и обратном направлениях. При неполном гидроударе фронт ударной волны не только меняет направление своего движения на противоположное, но и частично проходит далее сквозь не до конца закрытую задвижку.

Прямой гидравлический удар бывает тогда когда время закрытия задвижки t3 меньше фазы удара T, определяемой по формуле:

Здесь L - длина трубопровода от места удара до сечения, в котором поддерживается постоянное давление, Cu - скорость распространения ударной волны в трубопроводе, определяется по формуле Н.Е. Жуковского, м/с:

Cu= где E - модуль объемной упругости жидкости, p - плотность жидкости, - скорость распространения звука в жидкости, - модуль упругости материала стенок трубы, D - диаметр трубы, h - толщина стенок трубы.

Для воды отношение зависит от материала труб и может быть принято; для стальных - 0.01; чугунных - 0.02; ж/б - 0.1-0.14; асбестоцементных - 0.11; полиэтиленовых - 1-1.45

Коэффициент k для тонкостенных трубопроводов применяется (стальные, чугунные, а/ц, полиэтиленовые) равным 1. Для ж/б

коэффициент армирования кольцевой арматурой (- площадь сечения кольцевой арматуры на 1м длины стенки трубы). Обычно Повышение давления при прямом гидравлическом ударе определяется по формуле:

где - скорость движения воды в трубопроводе до закрытия задвижки.

Если время закрытия задвижки больше фазы удара (t3>Т), такой удар называется непрямым. В этом случае дополнительное давление может быть определено по формуле:

Результат действия удара выражают также величиной повышения напора H, которая равна:

при прямом ударе

при непрямом

 

35. Гидравлическое моделирование.

Гидравлическое моделирование осуществляется на специальных стендах, включающих фрагменты основных рабочих элементов в натуральную величину. Гидравлическое моделирование основано на общих законах подобия механических систем. Два потока жидкости подобны между собой, если они подобны геометрически, а также, если для всех сходственных точек обоих потоков соблюдается условия подобия их кинематических и динамических характеристик. Гидравлическое моделирование обычно осуществляется с помощью бачков с водой. Постоянную времени (и скорость разгона) в бачке можно изменять, изменяя объем, например, бачка. Гидравлическое моделирование основано на подобии движения печных (топочных) газов и жидкостей (воздуха) и предусматривает главным образом постоянство критерия Рейнольдса в натуре и модели. Специфика гидравлического моделирования требует расчета концентрации имитирующего вредность раствора в модели в соответствии с задаваемой в натуре концентрацией газа. Тем не менее, практика показывает, что в ряде случаев соотношение концентрации газа и раствора задается произвольным. Техника гидравлического моделирования является чрезвычайно непростым делом. При гидравлическом моделировании выявляют закономерности, определяющие величину сопротивления и производительность аппарата для различных типов контактных устройств.

36. Критериальные уравнения.

После приведения уравнения Навье-Стокса к следующему виду они стали содержать следующие типы переменных: 1) безразмерные независимые переменные; 2) безразмерные зависимые переменные; 3) безразмерные критерии – комплексы, состоящие из величин заданных по условиям однозначности.

После приведения к безразмерному уравнению изменился характер уравнений. Уравнения приобрели обобщенный вид, т.к. одно и то же значение любого критерия может быть получено путем бесконечного варьирования входящих величин. Уравнения могут быть записаны в виде:

Критерии подобия могут быть двух видов: 1) состоящие из разноименных параметров; 2) имеющие периодический вид, т.к. представляют собой отношение одноименных параметров. Относительные переменные также могут быть двух видов: 1) отношение переменной к одноименной величине, заданной по условию однозначности; 2) если по условию однозначности нельзя задать одноименную величину, то строится комплекс приводящий величину к безразмерному виду – число подобия;

В числа подобия входит определяемая величина. Критерий подобия состоит из заранее известных величин, заданных по условиям однозначности.

1) Критерий Рейнольдса - определяет соотношение сил инерции и вязкости в однородном потоке. Это важнейший гидродинамический критерий для вынужденного движения. При движении потока в нем возникают возмущения, которые исходят от стенок канала или вносятся в поток извне. Влияние возмущений зависит от соотношения сил. Если преобладают силы вязкости возмущения гаснут и поток не меняет своей структуры. Если преобладают силы инерции возмущения развиваются дальше, поток меняет течение, изменяется его структура. Граница соотношения сил определяется по значению Reкр. Если Re<Reкр преобладают вязкие силы, Re>Reкр – силы инерции. Re характеризует движение при соизмеримости инерции и вязкости. Если в потоке преобладает какой-то один вид сил характер перестает зависеть от величины Re. В этом случае говорят, что течение автомодельно относительно критерия Re.

2) Критерий гидродинамической гомохронности - определяет соотношение между периодом темпа внешних воздействий на поток и периодом перестройки скоростного поля. Используют только для нестационарных задач. - время, за которое проходит частица, движущаяся со скоростью V0, путь l0.

3) Критерий Фруда - определяет соотношение между силами инерции и тяжести в потоке. Используется только в задачах, в которых гравитационные эффекты имеют важное значение. Однако в таких задачах часто сложно задать характерную скорость (при естественной конвекции), поэтому строится критерий, в котором исключается скорость.

37. Гидравлические машины.

Гидравлические машины (гидромаши́ны) — одна из групп гидравлических механизмов. Термин «гидравлические машины» часто используют как обобщающий для насосов и гидродвигателей. Желательность такого обобщения вытекает из свойства обратимости насосов и гидродвигателей. Это свойство заключается в том, что гидравлическая машина может работать как в качестве насоса (генератора гидравлической энергии), так и в качестве гидродвигателя. Однако, в отличие от электрических машин, обратимость гидравлических машин не является полной: для реализации обратимости необходимо внесение изменений в конструкцию машины, и кроме того, не каждый насос может работать в качестве гидродвигателя, и не каждый гидродвигатель может работать в режиме насоса. Номинальная мощность, отдаваемая насосом в гидросистему или потребляемая гидродвигателем из гидросистемы, может быть определена по формуле:

= * где — номинальная подача насоса (для гидродвигателя — номинальный расход рабочей жидкости),

— номинальное давление на выходе из насоса (для гидродвигателя — номинальное давление рабочей жидкости на входе в гидродвигатель). Термин «гидравлические машины» не следует путать с термином «гидрофицированные машины». Под последними обычно понимаются машины, привод рабочих органов которых выполнен на базе гидравлического привода. Гидравлические машины являются необходимой частью гидропривода.

 

38. Центробежные насосы.

Центробежный насос — насос, в котором движение жидкости и необходимый напор создаются за счёт центробежной силы, возникающей при воздействии лопастей рабочего колеса на жидкость. Внутри корпуса насоса, который имеет, как правило, спиральную форму, на валу жестко закреплено рабочее колесо. Оно, как правило, состоит из заднего и переднего дисков, между которыми установлены лопасти. Они отогнуты от радиального направления в противоположную сторону, направления вращения рабочего колеса. С помощью патрубков корпус насоса соединяется с всасывающим и напорным трубопроводами. Если корпус насоса полностью наполнен жидкостью из всасывающего трубопровода, то при придании вращения рабочему колесу (например, при помощи электродвигателя) жидкость, которая находится в каналах рабочего колеса (между его лопастями), под действием центробежной силы будет отбрасываться от центра колеса к периферии. Это приведёт к тому, что в центральной части колеса создастся разрежение, а на периферии повысится давление. А если повышатся давление, то жидкость из насоса начнёт поступать в напорный трубопровод. Вследствие этого внутри корпуса насоса образуется разряжение, под действием которого жидкость одновременно начнёт поступать в насос из всасывающего трубопровода. Таким образом, происходит непрерывная подача жидкости центробежным насосом из всасывающего в напорный трубопровод. Центробежные насосы бывают не только одноступенчатыми (с одним рабочим колесом), но и многоступенчатыми (с несколькими рабочими колесами). При этом принцип их действия во всех случаях остается таким же, как и всегда. Жидкость будет перемещаться под действием центробежной силы, которая развивается за счёт вращающегося рабочего колеса. Центробежные насосы классифицируют по: Количеству ступеней (колёс); одноступенчатые насосы могут быть с консольным расположением вала — консольные; По расположению оси колёс в пространстве (горизонтальный, вертикальный); Давлению (низкого давления — до 0,2 МПа, среднего — от 0,2 до 0,6 МПа, высокого давления — более 0,6 МПа); Способу подвода жидкости к рабочему колесу (с односторонним или двухсторонним входом — двойного всасывания); Способу разъёма корпуса (с горизонтальным или вертикальным разъёмом); Способу отвода жидкости из рабочего колеса в канал корпуса (спиральный и лопаточный). В спиральных насосах жидкость отводится сразу в спиральный канал; в лопаточных жидкость сначала проходит через специальное устройство — направляющий аппарат (неподвижное колесо с лопатками); Коэффициенту быстроходности ns (тихоходные, нормальные, быстроходные); Функциональному назначению (водопроводные, канализационные,пожарные, химические, щелочные, нефтяные, землесосные и т. д.); Способу соединения с двигателем: приводные (с редуктором или со шкивом) или соединения с электродвигателем с помощью муфт.

КПД насоса зависит от коэффициента быстроходности ns, режима работы, конструктивного исполнения. При оптимальном режиме работы КПД крупных насосов может достигать 0,92, а малых около 0,6-0,75.

39. Основные показатели работы насосов.

Подача насоса (установки) — это количество жидкости перекачиваемой насосом (установкой) в единицу времени. Различают объемную подачу, массовую подачу и весовую подачу. В характеристиках насосов обычно принято задавать объемную подачу, т. е. объем жидкости, полезно используемый потребителем, при давлении, измеренном на выходе из насоса. Для гидроструйных насосов кроме полезной (пассивной) подачи должен быть задан расход рабочей (активной) жидкости. Напором насоса называют разность удельных механических энергий жидкости на выходе из насоса и на входе в него. Различают объемный, массовый и весовой напоры. Весовой напор имеет смысл в условиях определенного и постоянного поля гравитации. Он увеличивается с уменьшением ускорения свободнбго падения, а в условиях невесомости становится равным бесконечности. Поэтому весовой напор, широко используемый в настоящее время (на территории СССР он колеблется за счет изменения гравитационных сил в пределах 0,35 %, а в целом на Земле — в пределах 0,6 %), неудобен для характеристик насосов летательных и космических объектов. На практике очень часто для высоконапорных насосов скоростным напором и энергией положения пренебрегают вследствие их малости по сравнению со статическим давлением. Полная мощность насоса N расходуется на приведение его в действие. Она подводится извне в виде энергии приводного двигателя или с расходом рабочей жидкости, подаваемой к струйному аппарату под определенным напором. Коэффициент полезного действия (КПД) насоса — отношение полезной гидравлической мощности, к полной подводимой мощности. К показателям кавитации относят надкавитационный напор (кавитационный запас) — избыток удельной энергии жидкости над удельной энергией (упругостью) ее насыщенных паров. Для разных стадий развития кавитации различают следующие надкавитационные напоры: подавляющий — значение надкавитационного напора, при котором в насосе не проявляется никаких признаков кавитации; эрозионный (парогазовый) — значение надкавитационного напора, при котором обнаруживается эрозионное воздействие жидкости на проточную часть насоса; начало эрозии обнаруживается методом лаковых покрытий или путем анализа виброзвуковых характеристик; параметрический — значение надкавитационного напора, при котором появляются устойчивые кавитационные каверны; при испытаниях насосов рекомендуется принимать величину, при которой напор насоса уменьшается на 2 % по сравнению с бескавитационной работой при неизменной (заданной) подаче; предельный — наименьшее значение надкавитационного напора, при котором еще сохраняется кинематическое подобие (подобие течений) в модельном и испытываемом (натурном) насосах. Перечисленные кавитационные показатели являются объективными, однако для насосов важно знать необходимый надкавитационный напор. Этот параметр должен быть обеспечен в процессе эксплуатации для того, чтобы насос работал без существенного снижения напора и КПД или чтобы была ограничена приемлемыми пределами скорость кавитационной эрозии деталей насоса либо какие-нибудь другие показатели.

К показателям самовсасывания относятся следующие: Номинальная высота самовсасывания — расстояние по вертикали от свободной поверхности жидкости до верхней точки области возникновения кавитационных явлений, при которой насос обеспечивает самовсасывание жидкости определенного вида и последующую нормальную работу при температуре 20 °С и атмосферном давлении (0,1013 МПа). Подача воздуха при номинальной высоте самовсасывания — объемный расход (подача) воздуха, приведенный к давлению на входе в насос при отсутствии противодавления на выходе из насоса, атмосферном давлении 0,1013 МПа и температуре воздуха 20 °С. Показатель применим только для насосов со стабильной во времени характеристикой самовсасывания. Изменение подачи воздуха при самовсасывании во времени (нестабильность характеристики) определяется в основном нагревом жидкости, что хактерно для рециркуляционных систем самовсасывания. Минимальное время самовсасывания — время, в течение которого насос, работающий при номинальной высоте самовсасывания и отсутствии противодавления на выходе и имеющий подводящий трубопровод заданных диаметра и длины, осуществляет самовсасывание. Допустимая продолжительность самовсасывания — время, в течение которого допускается работа самовсасывающего насоса при номинальной высоте в режиме самовсасывания. При отсутствии режимных ограничений время обычно принимается равным времени, в течение которого подача воздуха уменьется на 25 % (например, вследствие нагрева жидкости для рециркуляционных установок и насосов).

К эргономическим показателям насосов и установок относятся следующие:

внешняя утечка, т. е. расход жидкости, вытекающий из насоса в наружную среду (например, через сальники) при номинальном режиме и определенном (заданном) давлении на входе;

уровень звукового давления — общий уровень звукового давления в дБ при пороговом значении, измеренном на расстоянии 1 м от наружного контура насоса (установки) в заданных точках при номинальном режиме работы насоса (установки);

уровень вибрации — общий уровень вибрации в дБ по эффективному (среднеквадратическому) значению колебательной скорости или ускорения, измеренный на опорной поверхности насоса (установки) в направлении, перпендикулярном к ней, в точках, где вибрация максимальна.

Для некоторых насосов (установок) применяют ряд специальных параметрических показателей — таких как допустимая продолжительность работы при нулевой подаче (при закрытой напорной задвижке) и т. п.

При выборе показателей надежности (наработка на отказ, ресурс, вероятность безотказной работы и т. п.) необходимо установить эксплуатационные допуски на рабочие параметры, так как чем больше допуск, тем выше надежность насоса.

Подобие насосов. Определить формы движения жидкости в насосах теоретическим путем на современной стадии развития науки не всегда представляется возможным. Поэтому в практике проектирования лопастных и струйных насосов во многих случаях используют опытные данные. Научно обоснованное обобщение результатов экспериментов можно выполнить с помощью методов теории подобия. Подобными называются явления, у которых все характеризующие их величины находятся между собой в постоянных соотношениях. Таким образом, при подобии потоков жидкости в насосах по известным характеристикам потока жидкости в одном из них (модели) можно получить характеристики потока жидкости в другом (натурном) насосе простым пересчетом. Такой переход аналогичен переходу от одной системы единиц физических величин к другой. Для обеспечения возможности такого перехода от модельного образца к натурному необходимо соблюдение геометрического, кинематического и силового (гидродинамического) подобия. Геометрическое подобие границ потоков (проточных полостей насосов) — необходимое условие подобия самих насосов. При соблюдении этого условия все сходственные линейные размеры проточной части сравниваемых насосов должны находиться в постоянном соотношении. Геометрическое подобие, кроме того, включает подобие относительных шероховатостей стенок проточной части насосов, толщин обтекаемых профилей.

Кинематическое подобие — это подобие траекторий движения частиц жидкости и равенство скоростей в сходственных точках потока (т. е. планы скоростей модельного и натурного потоков должны быть подобны). Силовое (гидродинамическое) подобие означает полное подобие потоков и характеризуется равенством отношений сил одинаковой физической природы, действующих на частицы жидкости или на границы потока, в сходственных точках. Силовое подобие в насосах возможно только при кинематическом подобии.

Характеристики насосов, испо

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...