Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Основные положения теории химического строения А.М. Бутлерова




1. Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения).

2. Химическое строение можно устанавливать химическими методами. (В настоящее время используются также современные физические методы).

3. Свойства веществ зависят от их химического строения.

В начале девятнадцатого века среди западных химиков безраздельно господствовала электрохимическая теория Дэви — Берцелиуса. Согласно теории Йенса Берцелиуса (1779—1848), в каждом химическом соединении отличали две его части: одну часть, заряженную электроположительно, другую — электроотрицательно. Соответственно сказанному все элементы Берцелиус располагал в ряд, причем кислород самым электроотрицательным элементом, калий самым электроположительным. Наиболее электроотрицательные элементы Берцелиус назвал металлоидами, наиболее электроположительные — металлами.

4.

5. В тридцатых годах своими работами французский химик Ж. Б. Дюма нанес удар по теории Дэви — Берцелиуса, выдвинув для органических соединений свою, так называемую, теорию типов. Дюма утверждал, что не столько природа сложного тела, сколько расположение в нем атомов, одинаковость типа, обуславливают химические свойства соединения. Однако эти воззрения Дюма скоро в свою очередь натолкнулись на целый ряд затруднений и противоречий.

6.

7. В дальнейшем огромным шагом вперед в проблеме развития основных химических понятий явилась так называемая унитарная система, или теория французских химиков, Ш. Жерара и О. Лорана. Наиболее существенной чертой этой теории было последовательное приложение к химическим соединениям нового учения. Лорану и Жерару принадлежит заслуга разграничения понятий о частице, атоме и эквиваленте. Однако наиболее принципиальным вопросом, вызвавшим бурные споры между ведущими химиками Запада, был вопрос о возможности выражать формулами строение химических соединений.

8.

9.

10. По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы - предвидеть свойства.

11. Атомы и группы атомов в молекуле оказывают взаимное влияние друг на друга.

Теория Бутлерова явилась научным фундаментом органической химии и способствовала быстрому ее развитию. Опираясь на положения теории, А.М. Бутлеров дал объяснение явлению изомерии, предсказал существование различных изомеров и впервые получил некоторые из них.

28 Ковалентная связь. Метод валентных связей.

бразование ковалентной связи можно рассматривать в рамках двух методов квантовой химии:метода валентных связей и метода молекулярных орбиталей.

В 1916 г. американский ученый Льюис высказал предположение о том, что химическая связь *образуется за счет обобществления двух электронов. При этом электронная оболочка атома стремится по строению к электронной оболочке благородного газа. В дальнейшем эти предположения послужили основой для развития метода валентных связей. В 1927 г. Гайтлером и Лондоном был выполнен теоретический расчет энергии двух атомов водорода в зависимости от расстояния между ними. Оказалось, что результаты расчета зависят от того, одинаковы или противоположны по знаку спины * взаимодействующих электронов. При совпадающем направлении спинов сближение атомов приводит к непрерывному возрастанию энергии системы. При противоположно направленных спинах на энергетической кривой имеется минимум, т.е. образуется устойчивая система – молекула водорода Н2 (рисунок 3.4).

Рисунок 3.4 – Зависимость энергии от расстояния между атомами водорода при однонаправленных и противоположно направленных спинах.

Межъядерное расстояние r 0, соответствующее минимуму, называется длиной связи, а энергия связи равна глубине потенциальной ямы E 0E 1, где Е 0 – энергия двух невзаимодействующих атомов, находящихся на бесконечном расстоянии друг от друга.

Образование химической связи между атомами водорода является результатом взаимопроникновения (перекрывания) электронных облаков. Вследствие этого перекрывания плотность отрицательного заряда в межъядерном пространстве возрастает, и положительно заряженные ядрапритягиваются к этой области. Такая химическая связь называется ковалентной.

Представления о механизме образования молекулы водорода были распространены на более сложные молекулы. Разработанная на этой основе теория химической связи получила название метода валентных связей (метод ВС). В основе метода ВС лежат следующие положения:

1) Ковалентная связь образуется двумя электронами с противоположно направленными спинами, причем эта электронная пара принадлежит двум атомам.

2) Ковалентная связь тем прочнее, чем в большей степени перекрываются электронные облака.

Комбинации двухэлектронных двухцентровых связей, отражающие электронную структуру молекулы, получили название валентных схем. Примеры построения валентных схем:

В валентных схемах наиболее наглядно воплощены представления Льюиса об образовании химической связи путем обобществления электронов с формированием электронной оболочки благородного газа: для водорода– из двух электронов (оболочка He), для азота – из восьми электронов (оболочка Ne).

Свойства ковалентной связи: насыщаемость, направленность и поляризуемость.

Насыщаемость ковалентной связи обусловлена ограниченными валентными возможностями атомов, т.е. их способностью к образованию строго определенного числа связей, которое обычно лежит в пределах от 1 до 6. Общее число валентных орбиталей в атоме, т.е. тех, которые могут быть использованы для образования химических связей, определяет максимально возможную валентность элемента. Число ужеиспользованных для этого орбиталей определяет валентность элемента в данном соединении.

Направленность ковалентной связи является результатом стремления атомов к образованию наиболее прочной связи за счет возможно большей электронной плотности между ядрами. Это достигается при такой пространственной направленности перекрывания электронных облаков, которая совпадает с ихсобственной. Исключение составляют s-электронные облака, поскольку их сферическая форма делает все направления равноценными. Для p- и d-электронных облаков перекрывание осуществляется вдоль оси, по которой они вытянуты, а образующаяся при этом связь называется σ-связью. σ-Связь имеет осевую симметрию, и оба атома могут вращаться вдоль линии связи, т.е. той воображаемой линии, которая проходит через ядра химически связанных атомов.

После образования между двумя атомами σ-связи для остальных электронных облаков той же формы и с тем же главным квантовым числом * остается только возможность бокового перекрывания по обе стороны от линии связи. В результате образуется π-связь. Она менее прочна, чем σ-связь: перекрывание происходит диффузными боковыми частями орбиталей. Каждая кратная связь (например, двойная или тройная) всегда содержит только одну σ-связь. Число σ-связей, которые образует центральный атом в сложных молекулах или ионах, определяет для него значение координационного числа. Например, в молекуле NH3 и ионе NH4+ для атома азота оно равно трем и четырем. Образование σ-связей фиксирует пространственное положение атомов относительно друг друга, поэтому число σ-связей и углы между линиями связи, которые называются валентными углами, определяют пространственную геометрическую конфигурацию молекул.

При оценке степени перекрывания электронных облаков следует учитывать знаки волновых функций * электронов. При перекрывании облаков с одинаковыми знаками волновых функций электронная плотность в пространстве между ядрами возрастает. В этом случае происходит положительное перекрывание, приводящее к взаимному притяжению ядер. Если знаки волновых функций противоположны, то плотность электронного облака уменьшается (отрицательное перекрывание), что приводит к взаимному отталкиванию ядер.

Поляризуемость рассматривают на основе представлений о том, что ковалентная связь может бытьнеполярной (чисто ковалентной) или полярной *.

Важными характеристиками химической связи являются также ее длина и кратность. Длина связи определяется расстоянием между ядрами связанных атомов в молекуле. Как правило, длина химической связи меньше, чем сумма радиусов атомов, за счет перекрывания электронных облаков. Кратность связи определяется количеством электронных пар, связывающих два атома, например:

этан H3C–CH3 одинарная связь (σ-связь)

этилен H2C=CH2 двойная связь (одна σ-связь и одна π-связь)

ацетилен HC≡CH тройная связь (одна σ-связь и две π-связи).

29 Неполярная и полярная ковалентная связь

Виды химической связи: ковалентная (полярная и неполярная), ионная, их сходство и различие. Химическая связь — это взаимодействие частиц (атомов, ионов), осуществляемое путем обмена электронами. Различают несколько видов связи. При ответе на данный вопрос следует подробно остановиться на характеристике ковалентной и ионной связи. Ковалентная связь образуется в результате обобществления электронов (с образованием общих электронных пар), которое происходит в ходе перекрывания электронных облаков. В образовании ковалентной связи участвуют электронные облака двух атомов. Различают две основные разновидности ковалентной связи: а) неполярную и б) полярную. а) Ковалентная неполярная связь образуется между атомами неметалла одного и того лее химического элемента. Такую связь имеют простые вещества, например О2; N2; C12. Можно привести схему образования молекулы водорода: (на схеме электроны обозначены точками). б) Ковалентная полярная связь образуется между атомами различных неметаллов. Схематично образование ковалентной полярной связи в молекуле НС1 можно изобразить так: Общая электронная плотность оказывается смещенной в сторону хлора, в результате чего на атоме хлора возникает частичный отрицательный заряд , а на атоме водорода — частичный положительный . Таким образом, молекула становится полярной: Ионной называется связь между ионами, т. е. заряженными частицами, образовавшимися из атома или группы атомов в результате присоединения или отдачи электронов Ионная связь характерна для солей и щелочей. Сущность ионной связи лучше рассмотреть на примере образования хлорида натрия. Натрий, как щелочной металл, склонен отдавать электрон, находящийся на внешнем электронном слое. Хлор же, наоборот, стремится присоединить к себе один электрон. В результате натрий отдает свой электрон хлору. В итоге образуются противоположно заряженные частицы — ионы Na+ и Сl-, которые притягиваются друг к другу. При ответе следует обратить внимание, что вещества, состоящие из ионов, образованы типичными металлами и неметаллами. Они представляют собой ионные кристаллические вещества, т. е. вещества, кристаллы которых образованы ионами, а не молекулами. После рассмотрения каждого вида связи следует перейти к их сравнительной характеристике. Для ковалентной неполярной, полярной и ионной связи общим является участие в образовании связи внешних электронов, которые еще называют валентными. Различие же состоит в том, насколько электроны, участвующие в образовании связи, становятся общими. Если эти электроны в одинаковой мере принадлежат обоим атомам, то связь ковалент-ная неполярная; если эти электроны смещены к одному атому больше, чем другому, то связь ковалент-ная полярная. В случае, если электроны, участвую щие в образовании связи, принадлежат одному атому, то связь ионная. Металлическая связь — связь между ион-атомами в кристаллической решетке металлов и сплавах, осуществляемая за счет притяжения свободно перемещающихся (по кристаллу) электронов (Mg, Fe). Все вышеперечисленные отличия в механизме образования связи объясняют различие в свойствах веществ с разными видами связей.

30 Способы выражения ковалентной связи.

КОВАЛЕНТНАЯ СВЯЗЬ -это связь, возникающая между атомами за счет образования общих электронных пар (Например, H2, HCl, H2O, O2).

По степени смещенности общих электронных пар к одному из связанных ими атомов ковалентная связь может быть полярной и неполярной.

А) КОВАЛЕНТНАЯ НЕПОЛЯРНАЯ СВЯЗЬ (КНС) - образуют атомы одного и того же химического элемента - неметалла (Например, H2, O2, О3).

Механизм образования связи.

Каждый атом неметалла отдает в общее пользование другому атому наружные не спаренные электроны. Образуются общие электронные пары. Электронная пара принадлежит в равной мере обоим атомам.

 

Рассмотрим механизм образования молекулы хлора:

Cl2 – кнс.

Электронная схема образования молекулы Cl2:

Структурная формула молекулы Cl2:

σ

Cl – Cl, σ (p – p) - одинарная связь

Демонстрация образования молекулы водорода

Рассмотрим механизм образования молекулы кислорода:

О2 – кнс.

Электронная схема образования молекулы О2:

Структурная формула молекулы О2:

σ

О = О

π

В молекуле кратная, двойная связь:

Одна σ (p – p)

и одна π (р – р)

 

Демонстрация образования молекул кислорода и азота

Б) КОВАЛЕНТНАЯ ПОЛЯРНАЯ СВЯЗЬ (КПС) - образуют атомы разных неметаллов, отличающихся по значениям электроотрицательности (Например, HCl, H2O).

Встречаются исключения, когда ковалентную связь образуют атом неметалла и металла!

Например, AlCl3, разница в электроотрицательностиý.î.<1.7, т.е.ý.î. = 3,16 (Cl) – 1,61(Al) = 1,55

Электроотрицательность (ЭО) - это свойство атомов одного элемента притягивать к себе электроны от атомов других элементов.

Самый электроотрицательный элемент – фтор F

Электроотрицательность можно выразить количественно и выстроить элементы в ряд по ее возрастанию. Наиболее часто используют ряд электроотрицательности элементов, предложенный американским химиком Л. Полингом.

Таблица. Электроотрицательности (ЭО) некоторых элементов (приведены в порядке возрастанияЭО).

Элемент K Na Ca Al H Br N Cl O F
ЭО 0.82 0.93 1 1.61 2.2 2.96 3.04 3.16 3.44 4.0

 

Механизм образования связи.

Каждый атом неметалла отдает в общее пользование другому атому свои наружные не спаренные электроны. Образуются общие электронные пары. Общая электронная пара смещена к более электроотрицательному элементу.

Рассмотрим механизм образования молекулы хлороводорода:

НCl – кпс.

Электронная схема образования молекулы НCl:

Структурная формула молекулы НCl:

σ

Н → Cl,

σ (s – p)

- одинарная связь σ, смещение электронной плотности в сторону более электроотрицательного атома хлора (→)

 

Закрепление

№1. Выпишите отдельно формулы веществ с ковалентной полярной и неполярной связями: H2S, KCl, O2, Na2S, Na2O, N2, NH3, CH4, BaF2, LiCl, O3, CO2, SO3, CCl4, F2.

№2. Напишите механизм образования молекул с ковалентным типом связи, определите тип перекрывания электронных облаков (π или σ), а так же механизм образования (обменный или донорно-акцепторный): H2S, KCl, O2, Na2S, Na2O, N2, NH3, CH4, BaF2, LiCl, CCl4, F2

 

31Направленность ковалентной связи. НАПРАВЛЕННОСТЬ — свойство ковалентной связи, определяющее геометрическую структуру молекулы. Причина направленности связи заключается в том, что перекрывание электронных орбиталей возможно только при их определенной взаимной ориентации, обеспечиваю­щей наибольшую электронную плотность в области их перекрывания. В этом случае образуется наиболее проч­ная химическая связь.

32Гибридизация атомных электронных орбиталей. Гибридизация – процесс перестройки неравноценных по энергии и по форме облаков в одинаковые. Существуют различные типы гибридизации: sp, sp2, sp3. Например,

sp BeH2 Be 1s2 2s2 Be---Be*

sp2 BCl3 B 1s2 2s2 2p1 B---B*

sp3 CH4 C 1s2 2s2 2p2 C---C*

33Ионная связь. Предельным случаем ковалентной полярной связи является ионная связь. Она образуется атомами, электроотрицательности которых значительно различаются. При образовании ионной связи происходит почти полный переход связующей электронной пары к одному из атомов, и образуются положительный и отрицательный ионы, удерживаемые вблизи друг друга электростатическими силами. Поскольку электростатическое притяжение к данному иону действует на любые ионы противоположного знака независимо от направления, ионная связь, в отличие от ковалентной, характеризуется ненаправленностью и ненасыщаемостью. Молекулы с наиболее выраженной ионной связью образуются из атомов типичных металлов и типичных неметаллов (NaCl, CsF и т.п.). В связи с этим ионные соединения представляют собой твердые тела с ионной кристаллической решеткой и характеризуются высокой температурой плавления и кипения, пр растворении в воде или плавлении проявляют свойства сильных электролитов.

34Водородная связь. Водородная связь - это взаимодействие между двумя электроотрицательными атомами одной или разных молекул посредством атома водорода: А−Н ... В (черта-ковалентная связь, три точки-водородная связь). Водородная связь обусловлена электростатическим притяжением атома водорода (несущим положительный заряд δ+) к атому электроотрицательного элемента, имеющего отрицательный заряд δ−. В большинстве случаев она слабее ковалентной, но существенно сильнее обычного притяжения молекул друг к другу в твердых и жидких веществах. В отличие от межмолекулярных взаимодействий водородная связь обладает свойствами направленности и насыщаемости, поэтому ее нередко считают одной из разновидностей ковалентной химической связи. Она может быть описана с помощью метода молекулярных орбиталей как трехцентровая двухэлектронная связь. Одним из признаков водородной связи может служить расстояние между атомом водорода и другим атомом, ее образующим. Оно должно быть меньше, чем сумма радиусов этих атомов. Чаще встречаются несимметричные водородные связи, в которых расстояние Н ... В больше, чем А−В. Однако в редких случаях (фтороводород, некоторые карбоновые кислоты) водородная связь является симметричной. Угол между атомами во фрагменте А−Н ... В обычно близок к 180o. Наиболее сильные водородные связи образуются с участием атомов фтора. В симметричном ионе [F−H−F] энергия водородная связи равна 155 кДж/моль и сопоставима с энергией ковалентной связи. Энергия водородная связи между молекулами воды уже заметно меньше (25 кДж/моль). Если водородная связь объединяет части одной молекулы, то говорят о внутримолекулярной водородной связи. Если же водородная связь образуется между атомом водорода одной молекулы и атомом неметалла другой молекулы (межмолекулярная водородная связь), то молекулы образуют довольно прочные пары, цепочки, кольца.

35Межмолекулярное взаимодействие - взаимод. молекул между собой, не приводящее к разрыву или образованию новых хим. связей. Межмолекулярное взаимодействие определяет отличие реальных газов от идеальных, существование жидкостей и мол. кристаллов. От межмолекулярного взаимодействия зависят мн. структурные, спектральные, термодинамич., теплофиз. и др. св-ва в-в. Появление понятия межмолекулярного взаимодействия связано с именем Й. Д. Ван-дер-Ваальса, к-рый для объяснения св-в реальных газов и жидкостей предложил в 1873 ур-ние состояния, учитывающее межмолекулярное взаимодействие (см. Ван-дер-Ваальса уравнение). Поэтому силы межмолекулярного взаимодействия часто называют ван-дер-ваальсовыми. Основу межмолекулярного взаимодействия составляют кулоновские силы взаимод. между электронами и ядрами одной молекулы и ядрами и электронами другой. В экспериментально определяемых св-вах в-ва проявляется усредненное взаимод., к-рое зависит от расстояния R между молекулами, их взаимной ориентации, строения и физ. характеристик (ди-польного момента, поляризуемости и др.). При больших R, значительно превосходящих линейные размеры l самих молекул, вследствие чего электронные оболочки молекул не перекрываются, силы межмолекулярных взаимодействий можно достаточно обоснованно подразделить на три вида-электростатические, поляризационные (индукционные) и дисперсионные. Электростатич. силы иногда называют ориентационными, однако это неточно, поскольку взаимная ориентация молекул может обусловливаться также и поляризац. силами, если молекулы анизотропны. При малых расстояниях между молекулами (R ~ l) различать отдельные виды межмолекулярных взаимодействий можно лишь приближенно, при этом, помимо названных трех видов, выделяют еще два, связанные с перекрыванием электронных оболочек, - обменное взаимодействие и взаимодействия, обязанные переносу электронного заряда. Несмотря на нек-рую условность, такое деление в каждом конкретном случае позволяет объяснять природу межмолекулярного взаимодействия и рассчитать его энергию.

36Превращения энергии при химических реакциях. Выделение или поглощение энергии происходит в виде теплоты. Это позволяет судить о наличии в веществах определенного количества некоторой энергии (внутренней энергией реакции). При химических реакциях происходит освобождение части энергии, содержащейся в веществах, это носит название теплового эффекта реакции, по которому можно судить об изменении количества внутренней энергии вещества. У ряда химических реакций можно наблюдать поглощение или выделение лучистой энергии. В этих случаях внутренняя энергия через теплоту превращается в излучение (горение). Существуют также процессы в которых внутренняя энергия сразу превращается в лучистую (лю-минисценция). В химических реакциях, протекающих с взрывом, внутренняя энергия превращается в механическую, причем частично сразу, частично переходя изначально в теплоту. Во время химических реакций происходит взаимное превращение энергий – внутренней энергии веществ в тепловую, лучистую, электрическую и механическую, и наоборот. Экзотермические химические реакции характеризуются выделением энергии во внешнюю среду. Эндотермические – поглощением энергии. В физических процессах вещества не изменяют своих свойств, может измениться внешняя форма или агрегатное состояние. В химических процессах образуются новые вещества с другими свойствами. При ядерных реакциях в атомах обязательно происходят трансформации электронной оболочки.

37Термохимия – раздел химии, изучающий тепловой эффект химической реакции базовых превращений и устанавливающий его зависимость от физ-хим параметров. В задачу термохимии входит также измерение и вычисление теплот фазовых переходов, растворения, разбавления и др. процессов, изучение теплоемкостей, энтальпий и энтропии в-в.

38Скорость химической реакции. Скорость определяется изменением концентраций реагирующих в-в в единицу времени, в единицу объема. Факторы, влияющие на скорость хим.реакции:

1.природа реагир.в-в

2.концентрация реагир.в-в

3.температура

4.наличие катализатора

5. также давление

6. и площадь поверхности реагир.в-в

39Зависимость скорости реакции от концентрации реагирующих веществ. С увеличением концентрации реагир.в-в скорость хим.р-ции повышается. В 19в Гульдбергом и Вааге был сформулирован закон действующих масс, устанавливающий зависимость скорости р-ции от концентрации реагир.в-в: «Скорость хим.р-ции при данной темп-ре прямо пропорциональна произведению концентраций реагир.в-в».

40Зависимость скорости реакции от температуры и от природы реагирующих веществ. Влияние природы реагир.в-в на скорость хим.р-ции выражается в том, что при одних и тех же условиях различные в-ва взаимодействуют друг с другом с разной скоростью. Например,

H2+F2=2HF (взрыв) H2+Br2=2HBr

Зависимость скорости хим.р-ции от темп-ры определяется правилом ВантГоффа: «При повышении темп-ры на каждые 10о скорость хим.р-ции возрастает в 2-4раза и определяется выражением Vt2/Vt1 = γ(t2-t1)/10». ТАКЖЕ зависимость скорости р-ции от темп-ры объясняет теория активации. Согласно этой теорииво взаимодействие вступают только активные молекулы, обладающие энергией достаточной для осуществления данной р-ции. Неактивные ч-цы можно сделать активными, если сообщить им необходимую дополнительную энергию(процесс активации). С увеличением темп-ры число активных ч-ц сильно возрастает, следовательно увеличивается скорость хим.р-ции. Скорость хим.р-ции зависит от значения энергии активации если: 1)оно мало, то за определенное время протекания р-ции энергетический барьер преодолеет большее число ч-ц и скорость будет высокой; 2)энергия активации велика, то р-ция идет медленно.

41Необратимые и обратимые реакции. Химическое равновесие. Р-ции, протекающие только в 1направлении, назыв необратимыми. Обратимыми назыв р-ции, протекающие в 2х взаимнопротивоположных направлениях. Большинство хим.р-ции явл обратимыми. Например, 2H2+O2=2H2O. Протекание р-ции в прямом направлении сопровождается выделением теплоты. Энтропия системы при этом уменьшается, т.к из 3моль газа образуется 2моль газа. Протекание р-ции в обратном направлении сопровождается поглощением теплоты, и энтропия увеличивается. В какой-то момент времени действие этих 2х противоположных р-ции уравновешивается, т.е наступает хим.равновесие. Kp=([C]c*[D]d)/([A]a*[B]b)

42Факторы, определяющие направление протекания химических реакций.

43Термодинамические величины. Внутренняя энергия и энтальпия. Одной из основных ф-ции состояния явл полная энергия системы E=Eкин+Eпот+Eвнутр. Энергия – мера способности системы совершать работу. Внутренняя энергия – общий запас энергии системы, который складывается из энергии движения и взаимодействия мол-л,атомов и электронов. Внутренняя энергия представляет собой способность системы совершения работы или передачи теплоты. Можно лишь определить изменение внутренней энергии при переходе из одного состояния в другое. ∆U можно измерить с помощью теплоты и работы. Q=∆U+A – первый закон т/д явл формой выражения закона сохранения энергии, кот гласит: «Теплота, поглощаемая системой, расходуется на увеличение внутренней энергии и на совершение системой механической энергии.

Энтальпия системы H=U+PV зависит от кол-ва в-ва, поэтому ее изменение обычно относят к 1 молю и выражается как кДж/моль. Энтальпия явл ф-ией состояния системы и характеризует энергетическое состояние в-ва.

44Термодинамические величины. Энтропия и энергия Гиббса. Энтропия S – т/д-ая ф-ия состояния, являющаяся мерой неупорядочной системы. Одно и то же макросостояние системы может сущ-ть при различном распределении энергии между отдельными мол-лами, т.е момтоять из большого числа микросостояний. Т/д-ая вероятность системы W представляет собой число микросостояний, с помощью кот может осущ-ся данное макросостояние. При темп-ре =0 для всех в-в сущ-ет только 1 возможность расстановки ч-ц, т.е когда W=1, S=0, поэтому энтропия имеет абсолютное значение, т.к число ч-ц в системе огромно, поэтому пользуются логарифмом т/д-ой вероятности S=K*lnW, K=R/NA --- 2 закон т/д.

Энергия Гиббса - величина, показывающая изменение энергии в ходе химической реакции и дающая таким образом ответ на вопрос о принципиальной возможности протекания химической реакции. ∆G= ∆H-T ∆S. Самопроизвольное протекание изобарно-изотермического процесса определяется двумя факторами: энтальпийным, связанным с уменьшением энтальпии системы (ΔH), и энтропийным T ΔS, обусловленным увеличением беспорядка в системе вследствие роста ее энтропии. Разность этих термодинамических факторов является функцией состояния системы, называемой изобарно-изотермическим потенциалом или свободной энергией Гиббса (G, кДж).

1. 45 Растворы. Характеристика растворов. Растворами называются гомогенные системы переменного состава, в которых растворенное вещество находится в виде атомов, ионов или молекул, равномерно окруженных атомами, ионами или молекулами растворителя.
Любой раствор состоит по меньшей мере из двух веществ, одно из которых считается растворителем, а другое - растворенным веществом. Растворителем считается компонент, агрегатное состояние которого такое же, как и агрегатное состояние раствора. Деление это довольно условно, а для веществ, смешивающихся в любых соотношениях (вода и ацетон, золото и серебро), лишено смысла. В этом случае растворителем считается компонент, находящийся в растворе в большем количестве.
Состав растворов может меняться в довольно широких пределах, в этом растворы сходны с механическими смесями. По другим признакам, таким как однородность, наличие теплового эффекта и окраски растворы сходны с химическими соединениями.
Растворы могут существовать в газообразном, жидком или твердом агрегатном состоянии. Воздух, например, можно рассматривать как раствор кислорода и других газов в азоте; морская вода - это водный раствор различных солей в воде. Металлические сплавы относятся к твердым растворам одних металлов в других.
Растворение веществ является следствием взаимодействия частиц растворяемого вещества и растворителя. В начальный момент времени растворение идет с большой скоростью, однако по мере увеличения количества растворенного вещества возрастает скорость обратного процесса - кристаллизации. Кристаллизацией называется выделение вещества из раствора и его осаждение. В какой-то момент скорости растворения и осаждения сравняются и наступит состояние динамического равновесия.
Раствор, в котором вещество при данной температуре уже больше не растворяется, или иначе, раствор, находящийся в равновесии с растворяемым веществом, называется насыщенным. Для большинства твердых веществ растворимость в воде увеличивается с повышением температуры. Если раствор, насыщенный при нагревании, осторожно охладить так, чтобы не выделялись кристаллы, то образуется пересыщенный раствор. Пересыщенным называется раствор, в котором при данной температуре содержится большее количество растворенного вещества, чем в насыщенном растворе. Пересыщенный раствор крайне нестабилен и при изменении условий (энергичное встряхивание или внесение активных центров кристаллизации - кристалликов соли, пылинок) образуется насыщенный раствор и кристаллы соли.
Раствор, содержащий меньше растворенного вещества, чем насыщенный, называется ненасыщенным раствором.

48,49 Теория электролитической диссоциации. Растворы всех веществ можно разделить на две группы: электролиты -проводят электрический ток, неэлектролиты -проводниками не являются. Это деление является условным, потому что все растворы веществ проводят электрический ток, все они в той или иной мере растворяются в воде и распадаются на катионы (положительно заряженные ионы) и анионы (отрицательно заряженные ионы). Следует различать настоящие и потенциальные электролиты.
Настоящие электролиты находятся в виде ионов уже в индивидуальном состоянии, т.е. до того, как они будут расплавлены или переведены в раствор. К настоящим электролитам относятся все типичные соли, которые в твёрдом состоянии образуют ионную кристаллическую решётку (например NaCl, K2SO4 и т.д.)
Потенциальные электролиты в индивидуальном состоянии ионов не содержат, но образуют их при переходе вещества в раствор. К ним относятся вещества, состоящие из молекул с сильно полярными связями (например HCl).
К неэлектролитам относится большая часть органических соединений, например диэтиловый эфир, бензол, глюкоза, сахароза.
Заряженные частицы появляются только в растворах и расплавах веществ вследствие электролитической диссоциации. Электролитическая диссоациация-это процесс распада веществ на ионы при растворении или расплавлении.
Следовательно, в результате диссоциации в растворе появляются ионы, которые являются предпосылкой для появления у раствора или расплава такого физического свойства как электропроводимость.
Как же происходит процесс растворения?. Разрушение ионной кристаллической решётки происходит под воздействием растворителя, например воды. Полярные молекулы воды настолько снижают силы электростатического притяжения между ионами в кристаллической решётке, что ионы становятся свободными и переходят в раствор.
При расплавлении, когда происходит нагревание кристалла, ионы начинают совершать интенсивные колебания в узлах кристаллической решётки, в результате чего она разрушается, образуется расплав, который состоит из ионов.
Теорию электролитической диссоциации создал в 1884-1887 гг. шведский химикАррениус.Эта классическая теория позволила как электропроводимость расплавов и растворов, так и протекание химических реакций в растворах между расплавленными или растворёнными веществами.

Константа диссоциации

[править]

Материал из Википедии — свободной энциклопедии

Константа диссоциации — вид константы равновесия, которая показывает склонность большого объекта диссоциировать(разделяться) обратимым образом на маленькие объекты, как например когда комплекс распадается на составляющиемолекулы, или когда соль разделяется в водном растворе на ионы. Константа диссоциации обычно обозначается и обратнаконстанте ассоциации. В случае с солями, константу диссоциации иногда называют константой ионизации.

В общей реакции

где комплекс разбивается на x единиц A и y единиц B, константа диссоциации определяется так:

где [A], [B] и [AxBy] — концентрации A, B и комплекса AxBy соответственно.

Определение

Электролитическая диссоциация слабых электролитов, согласно теории Аррениуса, является обратимой реакцией, то есть схематически её можно представить уравнениями (для одновалентных ионов:):

KA ↔ K+ + A,

где:

· KA — недиссоциированное соединение;

· K+ — катион;

· A — а

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...