5.2. Измерение плотности. 5.3. Нефть и нефтепродукты. Методы определения плотности. 6. Нефть и ее значение. 6.1. Теории происхождения нефти
5. 2. Измерение плотности Для измерения плотности используются различные приспособления, такие как: пикнометр (прибор для измерения истинной плотности) ареометр (денсиметр, плотномер) — измеритель плотности жидкостей, вибрационный плотномер (прибор для измерения плотности жидкости и газа под давлением). Наиболее общеупотребляемыми являются ареометр и пикнометр. Пикнометр – физико-химический прибор, стеклянный сосуд специальной формы и определённой вместимости, применяемый для измерения плотности веществ, в газообразном, жидком и твёрдом состояниях. Виды пикнометров изображены ниже на рис. 5. 2. 1. Рис. 5. 2. 1. Внешний вид пикнометров
Измерение плотности пикнометром основано на взвешивании находящегося в нём вещества (обычно в жидком состоянии), заполняющего пикнометр до метки на горловине или до верхнего края капилляра, что соответствует номинальной вместимости пикнометра. Измерения объёма значительно упрощаются, если вместо одной метки у пикнометра имеется шкала. Очень удобен в работе пикнометр с боковой капиллярной трубкой, у которой пробкой служит тело термометра. Плотность твёрдых тел определяют, погружая их в пикнометр с жидкостью. Для измерения плотности газов применяют пикнометр специальной формы (шаровидные и др. ). Основные достоинства пикнометрического метода определения плотности: - высокая точность измерений (до 10− 5 г/см³ ); - возможность использования малых количеств вещества (0, 5 — 100 см³ ); - малая площадь свободной поверхности жидкости в пикнометре, что практически исключает испарение жидкости и поглощение влаги из воздуха; - раздельное проведение операций термостатирования и последующего взвешивания.
Ареометр — прибор для измерения плотности (удельного веса) жидкости (обычно). Устройство ареометра основано на гидростатическом законе (законе Архимеда), по которому каждое тело плавает в жидкости столь глубоко погруженным в неё, что вес вытесненной им жидкости равен весу всего плавающего тела. Обычно представляет собой стеклянную трубку, нижняя часть которой при калибровке заполняется дробью или ртутью для достижения необходимой массы. В верхней, узкой части находится шкала, которая проградуирована в значениях плотности. Так как плотность жидкостей сильно зависит от температуры, ареометр иногда снабжают термометром для одновременного измерения температуры. Различают ареометры постоянного объёма и ареометры постоянной массы. Для измерения плотности жидкости ареометром постоянной массы сухой и чистый ареометр помещают в сосуд с этой жидкостью так, чтобы он свободно плавал в нем. Значения плотности считывают по шкале ареометра, по нижнему краю мениска. Для измерения плотности ареометром постоянного объёма изменяют его массу, достигая его погружения до определённой метки. Плотность определяется по массе груза (например, гирек) и объёму вытесненной жидкости. Ареометры постоянного объёма могут использоваться для определения плотности твёрдых тел. Существуют специальные ареометры, сразу дающие нужную характеристику жидкости. Так, для спирта имеются специальные спиртометры, сразу показывающие процентное содержание спирта; для молока применяются так называемые лактометры, показывающие содержание жира в молоке, и т. п. 5. 3. Нефть и нефтепродукты. Методы определения плотности Плотность нефти изменяется в пределах 730—1040 кг/м³. На практике для её измерения чаще используют единицы измерения грамм на кубический сантиметр (г/см³ ) и соответственно плотность нефти колеблется в пределах 0, 730—1, 040 г/см³. Наиболее распространенные величины плотности нефти — 0, 82-0, 90 г/см³.
По плотности выделяются несколько классов нефти: очень лёгкая — до 0, 80 г/см³; лёгкая — 0, 80-0, 84 г/см³; средняя — 0, 84-0, 88 г/см³; тяжёлая — 0, 88-0, 92 г/см³; очень тяжёлая — более 0, 92 г/см³. Определения плотности нефти и нефтепродуктов определяется согласно ГОСТ 3900-85Нефть и нефтепродукты. Методы определения плотности. Этот стандарт будет подробнее рассмотрен нами в главе 10. 4. «Определение плотности ареометром и пикнометром». 6. Нефть и ее значение 6. 1. Теории происхождения нефти Вопросы об исходном веществе, из которого образовалась нефть, о процессах нефтеобразования и формирования нефти в концентрированную залежь, а отдельных залежей в месторождения до сего времени ещё не являются окончательно решёнными. Существует множество мнений как об исходных для нефти веществах, так и о причинах и процессах, обусловливающих её образование. В познании человечеством генетической природы нефти и условий её образования можно выделить несколько периодов. Первый из них (донаучный) продолжался до средних веков. Так, в 1546 Георгий Агрикола писал, что нефть и каменные угли имеют неорганическое происхождение; последние образуются путём сгущения и затвердевания нефти. Второй период — научных догадок — связывается с датой опубликования труда М. В. Ломоносова «О слоях земных» (1763), где была высказана идея о дистилляционном происхождении нефти из того же органического вещества, которое даёт начало каменным углям. Третий период в эволюции знаний о происхождении нефти связан с возникновением и развитием нефтяной промышленности. В этот период были предложены разнообразные гипотезы неорганического (минерального) и органического происхождения нефти, а также космического. Органические теории происхождения нефти Один из первых, кто высказал научно обоснованную концепцию о происхождении нефти, был М. В. Ломоносов. В середине XVIII века в своём трактате «О слоях земных» великий русский учёный писал, что нефть произошла из каменного угля. Исходное вещество было одно: органический материал, преобразованный сначала в уголь, а потом в нефть. М. В. Ломоносов первый указал на связь между горючими полезными ископаемыми – углём и нефтью и выдвинул первую в мире гипотезу о происхождении нефти из растительных остатков.
В XIX в. среди ученых были распространены идеи, близкие к представлениям М. В. Ломоносова. Споры велись главным образом вокруг исходного материала: животные или растения. Немецкие ученые Г. Гефер и К. Энглер в 1888 г. поставили опыты, доказавшие возможность получения нефти из животных организмов. Была произведена перегонка сельдевого жира при температуре 400 °С и давлении 1 МПа. Из 492 кг жира было получено масло, горючие газы, вода, жиры и разные кислоты. Больше всего было отогнано масла (299 кг, или 61 %) плотностью 0, 8105 г/см3, состоящего на 9/10 из углеводородов коричневого цвета. Последующей разгонкой из масла получили предельные углеводороды (от пентана до нонана), парафин, смазочные масла, в состав которых входили олефины и ароматические углеводороды. Позднее, в 1919 г. академиком Н. Д. Зелинским был осуществлен похожий опыт, но исходным материалом служил органогенный ил преимущественно растительного происхождения (сапропель) из озера Балхаш. При его перегонке были получены: сырая смола – 63, 2 %; кокс – 16, 0%; газы (метан, оксид углерода, водород, сероводород) – 20, 8%. При последующей переработке смолы из нее извлекли бензин, керосин и тяжелые масла. Уголь образуется в болотах и пресноводных водоёмах, как правило, из высших растений. Нефть получается главным образом из низших растений и животных, но в других условиях. Нефть постепенно образовывалась в толще различных по возрасту осадочных пород, начиная от наиболее древних осадочных пород – кембрийских, возникших 600 млн. лет назад, до сравнительно молодых – третичных слоёв, сложившихся 50 млн. лет назад. Накопление органического материала для будущего образования нефти происходило в прибрежной полосе, в зоне борьбы между сушей и морем. По вопросу об исходном материале существовали разные мнения. Некоторые учёные полагали, что нефть возникла из жиров погибших животных (рыбы, планктона), другие считали, что главную роль играли белки, третьи придавали большое значение углеводам. Теперь доказано, что нефть может образоваться из жиров, белков и углеводов, т. е. из всей суммы органических веществ.
И. М. Губкин дал критический анализ проблемы происхождения нефти и разделил органические теории на три группы: теория, где преобладающая роль в образовании нефти отводится погибшим животным; теория, где преобладающая роль отводится погибшим растениям, и, наконец, теория смешанного животно-растительного происхождения нефти. Последняя теория, детально разработанная И. М. Губкиным, носит название сапропелитовой от слова “сапропель” – глинистый ил и является господствующей. В природе широко распространены различные виды сапропелитов. Различие в исходном органическом веществе является одной из причин существующего разнообразия нефтей. Другими причинами являются различие температурных условий вмещающих пород, присутствие катализаторов и др., а также последующие преобразования пород, в которых заключена нефть. В СССР были проведены исследования, в результате которых удалось установить роль микроорганизмов в образовании нефти. Т. Л. Гинзбург-Карагичева, открывшая присутствие в нефти разнообразнейших микроорганизмов, привела в своих исследованиях много новых, интересных сведений. Она установила, что в нефтях, ранее считавшихся ядом для бактерий, на больших глубинах идёт кипучая жизнь, не прекращавшаяся миллионы лет подряд. Целый ряд бактерий живёт в нефти и питается ею, меняя, таким образом, химический состав нефти. Академик И. М. Губкин в своей теории нефтеобразования придавал этому открытию большое значение. Гинзбург-Карагичевой установлено, что бактерии нефтяных пластов превращают различные органические продукты в битуминозные. Под действием ряда бактерий происходит разложение органических веществ и выделяется водород, необходимый для превращения органического материала в нефть.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|