Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Генетическая инженерия, ее значение в биотехнологии. Генетические основы селекции.




Генетическая инжене́рия (генная инженерия) — совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы.

Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология.Биотехнология - это производственное использование биологических агентов или их систем для получения ценных продуктов и осуществления целевых превращений.

Биологические агенты в данном случае - микроорганизмы, растительные или животные клетки, клеточные компоненты (мембраны клеток, рибосомы, митохондрии, хлоропласты), а также биологические макромолекулы (ДНК, РНК, белки - чаще всего ферменты). Биотехнология использует также вирусную ДНК или РНК для переноса чужеродных генов в клетки.

Современная биотехнология - это наука о генно-инженерных и клеточных методах создания и использования генетически трансформированных биологических объектов для улучшения производства или получения новых видов продуктов различного назначения.

Одним из разделов молекулярной генетики и молекулярной биологии, который нашел наибольшее практическое приложение, является генная инженерия.

Генная инженерия – это сумма методов, позволяющих переносить гены из одного организма в другой, или – это технология направленного конструирования новых биологических объектов.

Цель прикладной генетической инженерии заключается в конструировании таких рекомбинантных молекул ДНК, которые при внедрении в генетический аппарат придавали бы организму свойства, полезные для человека.

На технологии рекомбинантных ДНК основано получение высокоспецифичных ДНК-зондов, с помощью которых изучают экспрессию генов в тканях, локализацию генов в хромосомах, выявляют гены, обладающие родственными функциями (например, у человека и курицы). ДНК-зонды также используются в диагностике различных заболеваний.

Технология рекомбинантных ДНК сделала возможным нетрадиционный подход «белок-ген», получивший название «обратная генетика». При таком подходе из клетки выделяют белок, клонируют ген этого белка, модифицируют его, создавая мутантный ген, кодирующий измененную форму белка. Полученный ген вводят в клетку. Таким способом можно исправлять дефектные гены и лечить наследственные заболевания.

Если гибридную ДНК ввести в оплодотворенное яйцеклетку, могут быть получены трансгенные организмы, передающие мутантный ген потомками.

Генетическая трансформация животных позволяет установить роль отдельных генов и их белковых продуктов как в регуляции активности других генов, так и при различных патологических процессах.

Технология рекомбинантных ДНК использует следующие методы:

· специфическое расщепление ДНК рестрицирующими нуклеазами, ускоряющее выделение и манипуляции с отдельными генами;

· быстрое секвенирование всех нуклеотидов очищенном фрагменте ДНК, что позволяет определить границы гена и аминокислотную последовательность, кодируемую им;

· конструирование рекомбинантной ДНК;

· гибридизация нуклеиновых кислот, позволяющая выявлять специфические последовательности РНК или ДНК с большей точностью и чувствительностью;

· клонирование ДНК: амплификация in vitro с помощью цепной полимеразной реакции или введение фрагмента ДНК в бактериальную клетку, которая после такой трансформации воспроизводит этот фрагмент в миллионах копий;

· введение рекомбинантной ДНК в клетки или организмы.

С помощью генетической инженерии созданы линии животных, устойчивых к вирусным заболеваниям, а также породы животных с полезными для человека признаками.

Например, микроинъекция рекомбинантной ДНК, содержавшей ген соматотропина быка в зиготу кролика позволила получить трансгенное животное с гиперпродукцией этого гормона. Полученные животные обладали ярко выраженной акромегалией.

Практическое значение Г. и. для медицины связано с перспективами исправления наследственных дефектов у человека, создания и использования микроорганизмов, потерявших свою патогенность, но сохранивших способность к формированию иммунитета. Разработаны методы синтеза антибиотиков, аминокислот, гормонов, витаминов, ферментов и т.д., основанные на использовании микроорганизмов, включивших соответствующие гены.

Г. и. позволяет не только копировать природные соединения и процессы, но и модифицировать их, делать их более эффективными. Примером этого может служить новое направление исследований, названное белковой инженерией. Расчеты, производимые на основании данных об аминокислотной последовательности и пространственной организации молекул белков, показывают, что при определенных заменах некоторых аминокислотных остатков в молекулах ряда ферментов возможно значительное усиление их ферментативной активности. В изолированном гене, кодирующем синтез конкретного фермента, методами Г. и. проводят строго контролируемую замену определенных нуклеотидов. При синтезе ферментного белка под контролем такого модифицированного гена происходит заранее спланированная замена аминокислотных остатков в полипептидной цепи, что вызывает повышение ферментативной активности модифицированного фермента во много раз по сравнению с активностью природного прототипа.

Из практических достижений Г. и. наиболее важными являются создание продуцентов биологически активных белков — инсулина, интерферона, гормона роста и др., а также разработка способов активизации звеньев обмена веществ, которые связаны с образованием низкомолекулярных биологически активных соединений. Таким путем получены продуценты ряда антибиотиков, аминокислот, витаминов, во много раз более эффективные, чем их продуценты, выведенные традиционными методами генетики и селекции. г и. разрабатываются способы получения чисто белковых вакцин против вирусов гепатита, гриппа, герпеса, ящура, реализована идея использования для вакцинации комбинированного вируса осповакцины, в геном которого встроены гены, кодирующие синтез белков других вирусов (например, вирусов гепатита или гриппа). В результате прививки таким вирусом организм получает возможность выработать иммунитет не только против оспы, но и против гепатита, гриппа или другого заболевания, вызываемого тем вирусом, синтез белка которого котируется встроенным геном.

Селекция (от лат. selectio, seligere - отбор) - это наука о методах создания высокопродуктивных сортов растений, пород животных и штаммов микроорганизмов.

Современная селекция базируется на достижениях генетики и является основой эффективного высокопродуктивного сельского хозяйства и биотехнологии.

Задачи современной селекции:

- Создание новых и совершенствование старых сортов, пород и штаммов с хозяйственно-полезными признаками.

- Создание технологичных высокопродуктивных биологических систем, максимально использующих сырьевые и энергетические ресурсы планеты.

- Повышение продуктивности пород, сортов и штаммов с единицы площади за единицу времени.

- Повышение потребительских качеств продукции.

- Уменьшение доли побочных продуктов и их комплексная переработка.

- Уменьшение доли потерь от вредителей и болезней.

Для успешного ведения селекции необходимо изучение закономерностей наследования признаков в различных условиях среды. Любой генотип проявляется в фенотипе только при соблюдении ряда условий. Одни признаки в большей степени зависят от условий выращивания и ухода (удойность, яйценоскость), другие признаки в большей степени зависят от генотипа (жирномолочность, масса яиц). По первой группе признаков селекцию вести очень трудно, необходимо подбирать комплекс агро- и зоотехнических мероприятий. По второй группе признаков селекцию вести легче, т.к. генотип и фенотип более тесно связаны между собой (говорят, что признак характеризуется высокой наследуемостью). Таким образом, селекции подвергается не сам признак, а его норма реакции - генетически обусловленная способность организма изменять степень выраженности своих признаков в определенных пределах в определенных условиях внешней среды.

Известно, что норма реакции зависит и от особенностей генотипа, и от действия экзогенных факторов (условий среды), и от специфики данного признака. Под особенностями генотипа подразумевается и сочетание аллелей главных генов (олигогенов), и особенности генотипической среды, включающей полигены, эпистатические гены и гены-модификаторы. Для полной характеристики нормы реакции по определенному признаку необходимо изучить все распределения этого признака в градиентах разных условий среды. Поэтому даже хорошо известные сорта и породы подвергаются дальнейшему изучению с целью выявления таких условий выращивания, которые позволили бы усовершенствовать агро- и зоотехнику с целью максимальной реализации генетического потенциала сорта или породы.

Для повышения отдачи сорта (породы) широко используются возможности управления доминированием. В нашей стране приоритетные исследования в этой области были выполнены И.В. Мичуриным (см. ниже).

Современная селекция использует целый комплекс методов, основанных на последних достижениях множества наук: генетики, цитологии, ботаники, зоологии, микробиологии, агроэкологии, биотехнологии, информационных технологий и т.д. (некоторые из них будут рассмотрены в лекции «Генетика как научный фундамент биотехнологии»). Однако основными специфическими методами селекции остаются гибридизация и искусственный отбор.

Гибридизация.

Скрещивание организмов с разным генотипом является основным методом получения новых сочетаний признаков. Иногда гибридизация является необходимой, например, для предотвращения инбредной депрессии. Инбредная депрессия проявляется при близкородственном скрещивании и выражается в снижении продуктивности и жизненности (виталитета). Инбредная депрессия - это явление, противоположное гетерозису (см. ниже).

Различают следующие типы скрещиваний:

Внутривидовые скрещивания - скрещиваются разные формы в пределах вида (не обязательно сорта и породы). К внутривидовым скрещиваниям относятся и скрещивания организмов одного вида, обитающих в разных экологических условиях и/или в разных географических районов (эколого-географические скрещивания). Внутривидовые скрещивания лежат в основе большинства других скрещиваний.

Близкородственные скрещивания - инцухт у растений и инбридинг у животных. Применяются для получения чистых линий.

Межлинейные скрещивания - скрещиваются представители чистых линий (а в ряде случаев - разных сортов и пород). Межлинейные скрещивания используются для подавления инбредной депрессии, а также для получения эффекта гетерозиса (см. ниже). Межлинейное скрещивание может выступать как самостоятельный этап селекционного процесса, однако в последние десятилетия межлинейные гибриды (кроссы, или гибриды первого поколения F1) все чаще используют для получения товарной продукции.

Возвратные скрещивания (бэк-кроссы) - это скрещивания гибридов (гетерозигот) с родительскими формами (гомозиготами). Например, скрещивания гетерозигот с доминантными гомозиготными формами используются для того, чтобы не допустить фенотипического проявления рецессивных аллелей.

Анализирующие скрещивания (являются разновидностью бэк-кроссов) - это скрещивания доминантных форм с неизвестным генотипом и рецессивно-гомозиготных тестерных линий. Такие скрещивания используются для анализа производителей по потомству: если в результате анализирующего скрещивания расщепление отсутствует, то доминантная форма гомозиготна; если же наблюдается расщепление 1:1 (1 часть особей с доминантными признаками:1 часть особей с рецессивными признаками), то доминантная форма гетерозиготна.

Насыщающие (заместительные) скрещивания также являются разновидностью возвратных скрещиваний. При многократных возвратных скрещиваниях возможно избирательное (дифференциальное) замещение аллелей (хромосом), например, можно постепенно уменьшить вероятность сохранения нежелательного аллеля.

Отдаленные скрещивания - межвидовые и межродовые. Обычно отдаленные гибриды бесплодны и их размножают вегетативным путем; для преодоления бесплодия гибридов применяют удвоение числа хромосом, таким путем получают амфидиплоидные организмы: ржано-пшеничные гибриды (тритикале), пшенично-пырейные гибриды.

Соматическая гибридизация - это гибридизация, основанная на слиянии соматических клеток совершенно несходных организмов. Более подробно соматическая гибридизация будет рассмотрена в лекции «Генетика как научный фундамент биотехнологии».

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...