Известные популяционные генетики
⇐ ПредыдущаяСтр 4 из 4 Фундаментальную закономерность, описывающую соотношения между частотами аллелей генов и фенотипов вывели независимо Харди и Вайнберг в 1908 году. В это время популяционной генетики не существовало, тем не менее, найденная исследователями зависимость лежит в основе данной науки. Работы С. С. Четверикова по выявлению насыщенности природных популяций Drosophila melanogaster рецессивными мутациями так же дали важный импульс для развития популяционно-генетических исследований. Основателями теоретического и математического аппарата популяционной генетики можно считать английских биологов Рональда Фишера (1890—1962) и Джона Холдейна (1892—1964), а также американского ученого Сьюэла Райта (1889—1998). Фишер и Райт расходились по некоторым фундаментальным вопросам и дискутировали о соотношении ролей отбора и генетического дрейфа. Французский исследователь Гюстав Малеко(1911—1998) также внёс важный вклад в раннее развитие рассматриваемой дисциплины. Противоречия между американскими и британскими «школами» продолжались долгие годы. Джон Мейнард Смит (1920—2004) был учеником Холдейна, в то время как У. Д. Гамильтон (1936—2000) находился под сильным влиянием работ Фишера. Американский исследователь Джордж Прайс (1922—1975) работал с ними обоими. Последователями Райта в США стали Ричард Левонтин (р. 1929) и японский генетик Мотоо Кимура (1924—1994). Итальянец Луиджи Лука Кавалли-Сфорца (р. 1922), генетик популяций, с 1970-х гг. работавший в Стэнфорде, особое внимание уделял вопросам генетики популяций человека. Генная теория Уже больше ста лет назад было известно, что каждый новый организм возникает в результате соединения яйца и сперматозоида; но каким образом эти крошечные комочки протоплазмы передают потомству признаки родителей, оставалось для ученых загадкой в течение еще нескольких десятков лет. Чарлз Дарвин предполагал, что каждая ткань или орган родителя выделяет своего рода модели, которые он назвал пангенами; эти пангены включаются в яйцо или сперматозоид и таким образом передаются потомкам, обеспечивая развитие у них копий того органа, из которого они сами произошли.
В 1887 году Август Вейсман сформулировал теорию непрерывности зародышевой плазмы. Он считал, что половые (зародышевые) клетки происходят из родительских половых клеток, а не из клеток тела (соматических клеток) данного индивидуума. По предположению Вейсмана, при первом же дроблении оплодотворенного яйца одна линия клеток - зародышевая плазма - дифференцируется от клеток будущего тела, или соматоплазмы; на зародышевую плазму не оказывают влияния ни соматоплазма, ни внешние воздействия. Еще в то время, когда не были известны ни хромосомы, ни гены. Вейсман понял, что наследственность связана с передачей от одного поколения к другому специфических молекулярных комплексов. Достаточно немного поразмыслить, чтобы усмотреть очевидное следствие этой теории: приобретенные признаки не наследуются. Потомству могут быть переданы только те изменения, которые возникли в зародышевой плазме, но не в соматических клетках. Среди беспозвоночных животных есть такие формы, у которых непрерывность зародышевой плазмы из поколения в поколение очевидна, так как уже на ранних этапах дробления яйца у них обособляется клетка, служащая предшественницей половых клеток. У большинства животных различие между зародышевой плазмой и соматической плазмой не столь очевидно и половые клетки образуются, по-видимому, из неспециализированных соматических клеток. По мере накопления знаний о хромосомах и генах становилось ясно, что генетическая непрерывность от поколения к поколению обусловлена не какими-то особыми свойствами линии зародышевых клеток, а хромосомами, имеющимися во всех клетках.
Обобщения, касающиеся механизма наследственности, принадлежат к наиболее точным и наиболее «количественным» биологическим теориям. Они позволяют предсказывать, какова вероятность того, что потомство двух данных родителей будет обладать тем или иным признаком. Эти обобщения носят название законов Менделя - по имени сформулировавшего их в 1865 году Грегора Менделя. Мендель вывел эти законы на основании своих тщательных опытов по скрещиванию разных сортов гороха. Важность законов Менделя была осознана лишь в 1900 году, когда они были независимо вновь открыты тремя разными исследователями - Корренсом, де Фризом и Чермаком. Первый закон Менделя — закон расщепления - гласит, что единицы наследственности (т. е. гены) представлены у каждой особи парами; при образовании гамет (половых клеток) две единицы каждой пары расходятся, или расщепляются, и переходят в разные гаметы, так что каждая половая клетка содержит одну и только одну единицу каждого типа. Второй закон Менделя — закон независимого распределения - гласит, что расщепление каждой пары единиц при образовании гамет происходит независимо от расщепления других пар единиц, так что в половой клетке члены различных пар сочетаются случайным образом. Проницательность Менделя была поистине удивительной, так как он сделал эти обобщения в то время, когда детали строения хромосом, мейоза и оплодотворения еще не были известны. Позже, когда были открыты хромосомы и накопились генетические и цитологические данные, Сэттон (1902) и Морган (1911) сформулировали современную концепцию о линейном расположении единиц наследственности - генов - в хромосомах
ГЕНЕТИЧЕСКИЙ АНАЛИЗ, совокупность методов исследования наследственных свойств организма (его генотипа); поскольку анализ элементов генотипа (групп сцепления, генов и внутригенных структур) осуществляется, как правило, опосредованно, через признаки, генетический анализ является по существу анализом признаков, контролируемых теми или иными элементами генотипа. В зависимости от задачи и особенностей изучаемого объекта генетический анализ проводят на популяционном, организменном, клеточном и молекулярном уровнях. К основным методам генетического анализа относятся: селекционный метод, с помощью которого осуществляют подбор или создание исходного материала, подвергающегося дальнейшему анализу (например, Г. Мендель, который по существу является основоположником генетического анализа, начинал свою работу с получения константных — гомозиготных — форм гороха путём самоопыления); гибридологический метод, представляющий собой систему специальных скрещиваний и учёта их результатов (см. Гибридологический анализ); цитогенетический метод, заключающийся в цитологическом анализе генетических структур и явлений на основе гибридологического анализа с целью сопоставления генетических явлений со структурой и поведением хромосом и их участков (анализ хромосомных и геномных мутаций, построение цитологических карт хромосом, цитохимическое изучение активности генов и т. п.). Частный случай цитогенетического метода — геномный анализ. На основе популяционного метода изучают генетическую структуру популяций различных организмов: количественно оценивают распределение особей разных генотипов в популяции, анализируют динамику генетической структуры популяций под действием различных факторов (при этом используют создание модельных популяций). Молекулярно-генетический метод представляет собой биохимическое и физико-химическое изучение структуры и функции генетического материала и направлен на выяснение этапов пути «ген-признак» и механизмов взаимодействия различных молекул на этом пути. Мутационный метод позволяет (на основе всестороннего анализа мутаций) установить особенности, закономерности и механизмы мутагенеза, помогает в изучении структуры и функции генов. Особое значение мутационный метод приобретает при работе с организмами, размножающимися бесполым путём, и в генетике человека, где возможности гибридологического анализа крайне затруднены. Близнецовый метод, заключающийся в анализе и сравнении изменчивости признаков в пределах различных групп близнецов, позволяет оценить относительную роль генотипа и внешних условий в наблюдаемой изменчивости. Особенно важен этот метод при работе с малоплодовитыми организмами, имеющими поздние сроки наступления половой зрелости (например, крупный рогатый скот), а также в генетике человека. В генетическом анализе используют и многие другие методы (онтогенетический, иммуногенетический, математический и т. д.), позволяющие комплексно изучать генетический материал. Генетический анализ является исходным и необходимым этапом на пути к генетическому синтезу (получению организмов с заданными свойствами), в том числе методами генетической инженерии.
Методы селекции растений
Основные методы селекции растений в частности -- отбор и гибридизация. Для перекрестно-опыляемых растений применяют массовый отбор особей с желаемыми свойствами. В противном случае невозможно получить материал для дальнейшего скрещивания. Если же желательно получение чистой линии -- то есть генетически однородного сорта, то применяют индивидуальный отбор, при котором путем самоопыления получают потомство от одной единственной особи с желательными признаками. Для закрепления полезных наследственных свойств необходимо повысить гомозиготность нового сорта. Иногда для этого применяют самоопыление перекрестно-опыляемых растений. При этом могут фенотипически проявиться неблагоприятные воздействия рецессивных генов. Основная причина этого -- переход многих генов в гомозиготное состояние. У любого организма в генотипе постепенно накапливаются неблагоприятные мутантные гены. Они чаще всего рецессивны, и фенотипически не проявляются. Но при самоопылении они переходят в гомозиготное состояние, и возникает неблагоприятное наследственное изменение. В природе у самоопыляемых растений рецессивные мутантные гены быстро переходят в гомозиготное состояние, и такие растения погибают. Несмотря на неблагоприятные последствия самоопыления, его часто применяют у перекрестно-опыляемых растений для получения гомозиготных ("чистых") линий с нужными признаками. Это приводит к снижению урожайности. Однако затем проводят перекрестное опыление между разными самоопыляющимися линиями и в результате в ряде случаев получают высокоурожайные гибриды, обладающие нужными селекционеру свойствами. Это метод межлинейной гибридизации, при котором часто наблюдается эффект гетерозиса (гетерозис - мощное развитие гибридов, полученных при скрещивании "чистых" линий, одна из которых гомозиготная по доминантным, другая - по рецессивным генам): гибриды первого поколения обладают высокой урожайностью и устойчивостью к неблагоприятным воздействиям. Гетерозис характерен для гибридов первого поколения, которые получаются при скрещивании не только разных линий, но и разных сортов и даже видов. Основная причина гетерозиса заключается в устранении в гибридах вредного проявления накопившихся рецессивных генов. Другая причина -- объединение в гибридах доминантных генов родительских особей и взаимное усиление их эффектов.
В селекции растений широко применяется экспериментальная полиплоидия, так как полиплоиды отличаются быстрым ростом, крупными размерами и высокой урожайностью. Получают искусственные полиплоиды при помощи химических веществ, которые разрушают веретено деления, в результате чего удвоившиеся хромосомы не могут разойтись, оставаясь в одном ядре. При создании новых сортов при помощи искусственного мутагенеза исследователи используют закон гомологических рядов Н. И. Вавилова. Организм, получивший в результате мутации новые свойства, называют мутантом. Большинство мутантов имеет сниженную жизнеспособность и отсеивается в процессе естественного отбора. Для эволюции или селекции новых пород и сортов необходимы те редкие особи, которые имеют благоприятные или нейтральные мутации. Методы селекции животных Основные принципы селекции животных не отличаются от принципов селекции растений. Однако селекция животных имеет некоторые особенности: для них характерно только половое размножение; в основном очень редкая смена поколений (у большинства животных через несколько лет); количество особей в потомстве невелико. Одним из важнейших достижений человека на заре его становления и развития (10--12 тыс. лет назад) было создание постоянного и достаточно надежного источника продуктов питания путем одомашнивания диких животных. Главным фактором одомашнивания служит искусственный отбор организмов, отвечающих требованиям человека. У домашних животных весьма развиты отдельные признаки, часто бесполезные или даже вредные для их существования в естественных условиях, но полезные для человека. Поэтому в естественных условиях одомашненные формы существовать не могут. Одомашнивание сопровождалось отбором, вначале бессознательным (отбор тех особей, которые лучше выглядели, имели более спокойный нрав, обладали другими ценными для человека качествами), затем осознанным, или методическим. Широкое использование методического отбора направлено на формирование у животных определенных качеств, удовлетворяющих человека. Отбор родительских форм и типы скрещивания животных проводятся с учетом цели, поставленной селекционером. Разводимые животные оцениваются не только по внешним признакам, но и по происхождению и качеству потомства. Поэтому необходимо хорошо знать их родословную. По признакам предков, особенно по материнской линии, можно судить с известной вероятностью о генотипе производителей. В селекционной работе с животными применяют в основном два способа скрещивания: аутбридинг (неродственное скрещивание) и инбридинг (близкородственное). Аутбридинг между особями одной породы или разных пород животных, при дальнейшем строгом отборе приводит к поддержанию полезных качеств и к усилению их в ряду следующих поколений. При инбридинге в качестве исходных форм используются братья и сестры или родители и потомство. Такое скрещивание в определенной степени аналогично самоопылению у растений, которое также приводит к повышению гомозиготности и, как следствие, к закреплению хозяйственно ценных признаков у потомков. В селекции инбридинг обычно является лишь одним из этапов улучшения породы. За ним следует скрещивание разных межлинейных гибридов, в результате которого нежелательные рецессивные аллели переводятся в гетерозиготное состояние и вредные последствия близкородственного скрещивания заметно снижаются. У домашних животных, как и у растений, наблюдается явление гетерозиса: при межпородных или межвидовых скрещиваниях у гибридов первого поколения происходит особенно мощное развитие и повышение жизнеспособности. Гетерозис широко применяют в промышленном птицеводстве и свиноводстве, так как первое поколение гибридов непосредственно используют в хозяйственных целях. Отдаленная гибридизация домашних животных менее эффективна, чем растений. Межвидовые гибриды животных часто бывают бесплодными. Но в некоторых случаях отдаленная гибридизация сопровождается нормальным слиянием гамет, обычным мейозом и дальнейшим развитием зародыша, что позволило получить некоторые породы, сочетающие ценные признаки обоих использованных в гибридизации видов. История селекции Первоначально в основе селекции лежал искусственный отбор, когда человек отбирает растения или животных с интересующими его признаками. До XVI--XVII вв. отбор происходил бессознательно, то есть человек, например, отбирал для посева лучшие, самые крупные семена пшеницы, не задумываясь о том, что он изменяет растения в нужном ему направлении. Только в последнее столетие человек, еще не зная законов генетики, стал использовать отбор сознательно или целенаправленно, скрещивая те растения, которые удовлетворяли его в наибольшей степени. Однако методом отбора человек не может получить принципиально новых свойств у разводимых организмов, так как при отборе можно выделить только те генотипы, которые уже существуют в популяции. Поэтому для получения новых пород и сортов животных и растений применяют гибридизацию (скрещивание), скрещивая растения с желательными признаками и, в дальнейшем, отбирая из потомства те особи, у которых полезные свойства выражены наиболее сильно.
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|