Интервальная пропорциональная шкала
В отличие от номинальных или ранговых измерений значения переменных, измеряемых с помощью интервальных шкал, изменяются непрерывно, они представляют собой численные величины, а не категории. Поэтому количество различных наблюдаемых значений может быть так велико, что частоты и процент-Обратим внимание, что каждый из источников информации — это отдельная переменная. ные отношения не в состоянии эффективно просуммировать данные. В самом деле, при измерении такой переменной, как возраст, мы можем получить набор значений, ни одно из которых не будет повторять другого (если в нашем выборочном массиве не окажется какого-то количества респондентов, чьи даты рождения совпадают день в день). При измерении доходов также трудно рассчитывать, что суммы доходов различных респондентов ил и их семей будут совпадать до рублей и копеек. По этой причине значения таких переменных и размещают в интервалах, размеры которых определяются исследовательским замыслом. Критериями центральной тенденции для пропорционального и интервального уровней измерений выступают мода, медиана и среднее арифметическое. Среднее арифметическое представляет собой сумму значений переменной, разделенную на число значений. Общая формула для ее вычисления алгебраически выглядит следующим образом: (1) где х— числовое значение /-й позиции, a N— общее число наблюдений (объем выборки). Рассмотрим вычисление средней арифметической величины на примере расчета средней посещаемости занятий в студенческой группе по данным проверок деканата. Данные о посещаемости приведены в табл. 10. Сложив числа в правой колонке и разделив их на 10 (число проверок), мы получим, что средняя посещаемость в группе составила х = 18,6.
Понятно, что полученное число — 18,6студента — не может иметь реального физического смысла, оно пригодно лишь для сравнения между собою уровня посещаемости в двух и более группах. Хотя и для этой цели полученные средние величины вначале следует нормировать, разделив их на общую численность студентов каждой группы. Таблица 10 Посещаемость занятий студентами академической группы
Источник: Гипотетические данные. Среднее может оказаться обманчивым показателем центральной тенденции, если в объеме выборочной совокупности среди значений интересующей нас переменной появится какая-то экстремальная величина. Например, среднедушевые ежемесячные доходы семей в двух гипотетических общинах (скажем, среди жильцов двух подъездов одного дома, каждый из которых насчитывает по 10 квартир) идентичны, за исключением дохода одной семьи (табл. 11). Среднедушевой доход семьи жителей 1 -го подъезда — 4230 рублей — более чем вдвое превышает среднедушевой доход во 2-м подъезде — 2050 рублей. Именно расчет среднего дохода в каждом из подъездов создает ошибочное впечатление, что люди в 1 -м подъезде вдвое богаче, чем люди во 2-м подъезде, тогда как в реальности есть лишь одна семья в 1 -м подъезде, которая гораздо богаче любой семьи из обоих подъездов. В этом случае медиана будет лучшим показателем центральной тенденции, нежели среднее. Медианный подход даст для обоих подъездов одинаковый результат: 2100 рублей — довольно близкий к среднему значению по 2-му подъезду. Если среднее и медиана не сходны по своему значению, можно сделать вывод, что на значение среднего влияют одно или несколько экстремальных значений измеряемой переменной.
Таблица 11 Среднедушевые ежемесячные доходы семей в двух подъездах дома (руб.).
Источник: Гипотетические данные. Вычисление средней арифметической величины для переменных, значения которых измеряются не однозначно определенными числами, а изменяются вдоль непрерывного ряда значений, имеет свои особенности. Здесь расчитывается не среднее арифметическое, а средневзвешенное. Предположим, что нам требуется вычислить средний возраст опрошенных респондентов (табл. 12). Таблица 12 Распределение респондентов по возрасту
Источник: Аналитический отчет об опросе жителей г. Нижнего Новгорода, декабрь 1998 г. Вначале мы должны определить середину каждого интервала; это делается путем вычисления простого среднего, т.е. сумма крайних значений де- лится пополам. Затем необходимо умножить это значение на число респондентов соответствующего возраста, сложить полученные произведения и разделить на общий объем выборки (см. табл. 12а). Таблица 12а Результат 2-го этапа вычисления средневозрастной величины
Разделив полученную сумму на 457, мы получим средний возраст в 42,6 года. Таким образом, формула для средневзвешенного значения выглядит аналогично соотношению (1) с учетом того, что jc. здесь относится к середине интервала: (2) где xi — числовое значение /-й позиции; п. — число респондентов, наблюдаемых по i-й позиции переменной; N— общее число наблюдений. Показатели разброса данных интервального или пропорционального уровня включают среднее отклонение, дисперсию и среднеквадратическое отклонение. Среднее отклонение (MD) представляет собой меру разброса, основанную на отклонении каждого из значений от среднего. Пример ее вычисления приведен ниже, по данным из табл. 13.
Таблица 13
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|