Метод среднего абсолютного прироста
Прогнозируемый уровень изучаемой величины изменяется в соответствии со средним абсолютным приростом этой величины в прошлом. Данный метод применяется, если общая тенденция в динамике линейна (для случая, приведенного на рисунке 32Б)
Где где y0 – базовый уровень экстраполяции выбирается как среднее значение нескольких последних значений исходного ряда - средний абсолютный прирост уровней ряда l – число интервалов прогнозирования
Пример. По данным из таблицы рассчитать прогнозное значение на t=13,14,15 В качестве базового уровня принято усредненное значение последних значений ряда, максимально трех.
Метод среднего темпа роста Прогнозируемый уровень изучаемой величины изменяется в соответствии со средним темпом роста данной величины в прошлом. Данный метод применяется, если общая тенденция в динамике характеризуется показательной или экспоненциальной кривой (рисунок 32В)
, где – средний темп роста в прошлом l – число интервалов прогнозирования
Прогнозная оценка будет зависеть от того, в какую сторону от основной тенденции (тренда) отклоняется базовый уровень y0, поэтому рекомендуется рассчитывать y0 как усредненное значение нескольких последних значений ряда.
Пример.
|
Прогнозирование на основе математических моделей
Наиболее распространенным методом прогнозирования является нахождение аналитического выражения (уравнения) тренда. Тренд экстраполируемого явления - это основная тенденцию временного ряда, в некоторой мере свободная от случайных воздействий.
Разработка прогноза заключается в определении вида экстраполирующей функции y=f(t), которая выражает зависимость изучаемой величины от времени на основе исходных наблюдаемых данных. Первым этапом является выбор оптимального вида функции, дающей наилучшее описание тренда. Наиболее часто используются следующие зависимости:
• линейная ;
• параболическая
• показательная функция
Проблемы нахождения коэффициентов линейной функции и прогноз на ее основе были рассмотрены в разделе «регрессионный анализ». Если форма кривой, описывающей тренд, имеет нелинейный характер, то задача оценки функции y=f(t) усложняется, и в этом случае необходимо привлечь к анализу специалистов по биостатистике и воспользоваться компьютерными программами по статистической обработке данных.
|
|
В большинстве реальных случаев временной ряд представляет собой сложную кривую, которую можно представить как сумму или произведение трендовой, сезонной, циклической и случайной компонент (рисунок 33).
Рисунок 33
Тренд представляет собой плавное изменение процесса во времени и обусловлен действием долговременных факторов. Сезонный эффект связан с наличием факторов, действующих с заранее известной периодичностью (например, времена года, лунные циклы). Циклическая компонента описывает длительные периоды относительного подъема и спада, состоит из циклов переменной длительности и амплитуды (например, некоторые эпидемии имеют длительный циклический характер). Случайная составляющая ряда отражает воздействие многочисленных факторов случайного характера и может иметь разнообразную структуру.
Анализ всех компонентов временного ряда и прогнозирование на их основе задача нетривиальная и требует специальной подготовки.
|
|