Способы получения и ввода ультразвуковых колебаний. Конструкция пьезопреобразователей
Существует ряд способов возбуждения ультразвуковых колебаний, в том числе механический, радиационный, лазерный, магнитный и др. [2, 4, 5]. В практике диагностирования в полевых условиях для получения и ввода ультразвуковых колебаний применяют специальные устройства - преобразователи, основанные на использовании электромагнитно-акустического (ЭМА) и пьезоэлектрического эффектов. Важным преимуществом ЭМА-преобразователей является возможность контроля бесконтактным методом через слой изоляции. Вместе с тем такие преобразователи, в силу их конструктивных особенностей и низкого коэффициента преобразования, используются для прозвучивания поперечными и продольными волнами по нормали к поверхности объекта контроля и применяются в основном для толщинометрии металлоконструкций. Наиболее распространенным является способ, основанный на явлении пьезоэлектрического эффекта. Физическая сущность этого эффекта заключается в том, что при механическом растяжении или сжатии на поверхности пластин некоторых твердых материалов появляются электрические заряды противоположного знака - возникает прямой пьезоэффект; наоборот, при подаче на поверхность пластин переменных электрических зарядов пластина начинает сжиматься и разжиматься - имеет место обратный пьезоэффект. Такими свойствами обладает ряд природных и искусственных материалов: кварц, турмалин, сегнетова соль, титанат бария, цирконат-титанат свинца (ЦТС) и др. Схема возникновения прямого и обратного пьезоэффекта приведена на рис. 9.4. При реализации обратного пьезоэффекта механически вибрирующая пьезопластинка играет роль «молоточка», посылающего пучок упругих колебаний в контролируемый материал. Одновременно та же пластинка под действием прямого пьезоэффекта может служить преобразователем
Рис. 9.4. Схема работы пьезопластины: а – прямой пьезоэффект; б – обратный пьезоэффект Рис. 9.5. Основные типы пьезопреобразователей: а — прямой; б — наклонный; в — раздельно-совмешенный
механических колебаний в электрические сигналы. Пьезопластинки являются основным элементом пьезоэлектрических преобразователей (ПЭП), предназначенных для возбуждения и приема ультразвуковых колебаний. Основные преимущества ПЭП, обусловливающие их широкое применение, — высокая эффективность преобразования (высокая чувствительность) и простота конструкции. Используют три основные схемы конструктивного исполнения контактных ПЭП (рис. 9.5): прямые, наклонные, раздельно-совмещенные [4]. На поверхности пьезопластины 1 методом осаждения или напыления наносят серебряные или медные электропроводные покрытия, одно из которых с помощью проводника 7 подключается к электрическому разъему ПЭП, а другие — к металлическому корпусу 5. Толщина пьезопластины принимается равной половине длины волны в пьезоматериале на рабочей частоте ПЭП. В прямых ПЭП (рис. 9.5, а) пьезопластина одной стороной приклеена к демпферу 6, а другой стороной - к протектору 2. Протектор служит для зашиты пьезопластины от механических повреждений и должен обладать высокой износостойкостью. Демпфер в свою очередь служит для гашения свободных колебаний пьезопластины и получения коротких импульсов. Наклонный ПЭП (рис. 9.5, б) отличается от прямого наличием призмы 8, служащей для ввода упругих волн под углом к поверхности изделия. Угол призмы наклонного преобразователя выбирают таким, чтобы в изделие проходили волны одного типа в интервале между первым и вторым критическими углами. Призму обычно изготовляют из плексигласа, капролона или других материалов с высоким затуханием ультразвука, что обеспечивает быстрое затухание не вошедшей в изделие волны.
Раздельно-совмешенный ПЭП (рис. 9.5, в) представляет собой сдвоенный наклонный ПЭП с малым углом призмы (обычно не более 10°). Одна половина раздельно-совмещенного ПЭП работает на излучение, а вторая на прием. Для предупреждения прямой передачи сигналов от излучателя к приемнику имеется акустический разделительный экран 9. Угол призмы 8 выбирается в диапазоне от 0..100, что позволяет вводить в изделие волны одного типа без их трансформации. Изменяя углы призмы, их высоту и расстояние между ними, изменяют минимальную и максимальную глубину прозвучивания изделия. Раздельно совмещенные ПЭП сложнее по конструкции, не являются универсальными (предназначены для конкретных глубин прозвучивания), но имеют значительно более низкий уровень помех. Помимо рассмотренных выше существует большое число различных специальных пьезопреобразователей. Так, например, для контроля труб (особенно с малой толщиной стенки) применяют раздельно-совмещенные пьезопреобразователи «хордового» типа. Их использование позволяет существенно повысить надежность контроля сварных стыков труб, что является для нефтегазовой отрасли весьма актуальным. Используют различные способы ввода ультразвуковых колебаний от ПЭП в объект контроля: бесконтактный воздушный способ, контактный способ и иммерсионный способ. Бесконтактный воздушный способ иногда применяют для контроля изделий из пластмассы и композитных материалов; для контроля металлов этот способ не используется из-за большой разницы волновых сопротивлений. Иммерсионный способ предусматривает создание акустического контакта через слой жидкости. Для этого контролируемое изделие необходимо поместить в ванну с жидкостью (водой) либо применить струйный контакт через струю жидкости. В подавляющем большинстве случаев используют контактный способ с применением контактной смазки (жидкости). Контактная смазка 4 (см. рис. 9.5) служит для обеспечения акустического контакта и передачи ультразвуковых колебаний в объект контроля 3 и обратно. Толщина смазки должна быть меньше длины волны ультразвука в ней. Это достигается путем прижатия ПЭП к поверхности объекта контроля. Изменение толщины контактной смазки влияет на количественные результаты контроля, поэтому для повышения стабильности результатов при контактном способе контролируемую поверхность предварительно зачищают до шероховатости не хуже К240.
Ультразвуковым волнам присущи общие закономерности распространения в соответствии с явлениями дифракции (огибания) и интерференции (сложения). При размерах излучателя, меньших длины волны, от него распространяются сферические волны, и излучение является ненаправленным. Если размеры излучающей пьезопластинки существенно больше размеров длины волны, то ультразвуковые волны будут распространяться в виде направленного пучка. В непосредственной близости от излучателя (в зоне Френеля) пучок волн распространяется почти без расхождения, а интенсивность колебаний вдоль пучка непостоянна, имеет скачкообразный характер и определяется явлением интерференции. Протяженность ближней зоны rбл определяется скоростью распространения колебаний С в среде, их частотой/и размером (радиусом) а излучающей пластины При удалении от излучателя на расстояние r>rбл пучок колебаний распространяется с расхождением под некоторым углом , величина которого определяется соотношением
Интенсивность колебаний в этой зоне (зоне Фраунгофера) вдоль оси пучка будет монотонно убывать в соответствии с закономерностями затухания. Направленность пучка ультразвуковых колебаний улучшается с увеличением произведения аf. Интенсивность колебаний в поперечном сечении дальней зоны непостоянна и убывает по направлению от оси пучка к его периферии. Характер изменения интенсивности в зависимости от угла между направлением луча и осью пучка определяется диаграммой направленности излучателя. Длина луча, направленного под некоторым углом к оси пучка, в пределах диаграммы направленности пропорциональна амплитуде колебаний в этом направлении. Поэтому от отражателей (дефектов), расположенных на одинаковом расстоянии от излучателя, но под разными углами к оси пучка, поступают сигналы, разные по амплитуде. Максимальная амплитуда сигнала будет при расположении отражателя на оси пучка. Типовая диаграмма направленности дискового излучателя в полярных координатах приведена на рис 9.6. За единицу принимают амплитуду звукового давления U0 на оси пучка.
Рис. 9.6. Диаграмма направленности дискового излучателя
При уменьшении угла расхождения увеличивается протяженность ближней зоны rбл. При аf/С < 0,6 в диаграмме направленности возникают боковые лепестки, в которых сосредоточивается до 20 % энергии. В отдельных случаях боковые лепестки могут отражаться от дефектов и давать соответствующие сигналы.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|