Характеристики деградационных процессов
Рассмотрим основные характеристики и особенности деградационных процессов в порядке, перечисленном выше. Процессы изменения геометрии охватывают широкий круг явлений и могут иметь как локальный, так и общий характер, касающийся конструкции в целом. К их числу относят: отклонения от начальной (исходной) формы технологического оборудования (отклонения от прямолинейности, плоскостности, вертикальности, цилиндрично-сти и др.), образование гофр, отдулины, расслоения и т. д. Их причинами наряду с природными явлениями (например, пучение грунта при промерзании, оползни и др.) и эксплуатационными нагрузками является и деградация материалов. Роль материалов в указанном выше перечне явлений может быть различной [12]. Так, при формировании отдулин и расслоений существенно влияние химического состава и структуры сталей. Наибольшую склонность к образованию отдулин обнаруживают в сосудах и аппаратах давления, эксплуатируемых в контакте с водородсодержащей средой (особенно при наличии сероводорода) и выполненных из кремнемарганцовистых (16ГС, 09Г2С) и марганцовистых (О9Г2, 14Г2) сталей. Наличие в этих сталях раскатанных при прокатке пластичных сульфидов и оксисульфидов способствует скоплению водорода на границах раздела ферритная матрица - включение. Дальнейшее накопление водорода в стали сопровождается его молизацией в пустотах (порах). Водород из атомарного состояния переходит в молекулярное, вызывая повышение давления на границе раздела феррит - включение. Отмечено повышение давления водорода в указанных выше ловушках до 70 и даже до 150 атм, что в ряде случаев существенно превышает рабочее давление в аппаратах.
Изнашивание — это процесс разрушения и отделения материала с поверхности твердого тела при трении, проявляющийся в постепенном изменении размеров и формы тела (ГОСТ 22674-88. «Обеспечение износостойкости изделий»). Интенсивность изнашивания определяют в единицах объема, массы, длины и др. Износостойкость оценивается величиной, обратной скорости или интенсивности изнашивания. Изнашивание по характеру воздействия на поверхность трения принято подразделять на следующие виды: • механическое изнашивание, к которому относятся абразивное (включая гидро- или газоабразивное), эрозионное (в том числе гидро- или газоэрозионное), кавитационное, усталостное, изнашивание при фреттинге, изнашивание при заедании; • коррозийно-механическое: окислительное, изнашивание при фреттинг-коррозии, водородное, электроэрозионное. Классическая диаграмма изменения скорости износа по времени включает три участка (см. рис. 1. 2); участок приработки деталей, характеризуемый большой скоростью износа; участок установившегося износа (износ с относительно стабильной скоростью); участок катастрофического износа вплоть до предельного состояния. Для оценки износа используют различные методы в зависимости от вида оборудования: прямое измерение с помощью различных мерительных инструментов; толщинометрию с помощью ультразвуковых или иных толщиномеров; контроль содержания металла в смазочном материале и др. Все большее применение находит метод поверхностной или тонкослойной активации, основанный на локальном облучении изнашиваемой поверхности изделия и измерении интенсивности излучения образованной радионуклидной метки. Изменение интенсивности излучения при эксплуатации изделия переводится в характеристики износа по градуировочному графику. Контроль осуществляется дистанционно и позволяет оценивать износ от десятых долей микрометра до нескольких миллиметров с точностью 5...15 %. Данный метод применяют как для контроля машинного оборудования, так и для емкостного (сосуды, резервуары, трубопроводы и др.).
Коррозийная стойкость конструкционного материала - одна из важнейших, а зачастую и самая важная характеристика, определяющая надежность и срок службы технологического оборудования. Коррозия (от лат. corrodere - пожирать, изгладывать) - это процесс разрушения металлических материалов в результате их физико-химического взаимодействия с компонентами окружающей среды. Коррозия - это процесс, посредством которого сплавы железа возвращаются в более стабильную химическую форму, характерную для окиси; процесс, прямо противоположный металлургическим процессам, не нуждающийся в каких-либо энергетических затратах. Коррозия является сложным процессом, зависящим от многих факторов и от их конкретного сочетания. Учитывая это многообразие, коррозию классифицируют по следующим признакам: • по механизму протекания коррозийного процесса - химическая (в газовой или жидкостной среде, не проводящей электрический ток) и электрохимическая (в среде электролита). В большинстве случаев коррозийное поведение металлов является частным случаем их электрохимического поведения; • по типу агрессивных сред, в которых протекает коррозия - коррозия в газовой или жидкостной среде, особенно при высоких температурах; биокоррозия под воздействием продуктов жизнедеятельности микроорганизмов; коррозия в почве под действием растворов солей, содержащихся в грунте; коррозия блуждающим током; коррозия, обусловленная воздействием атмосферных осадков с поверхностью металла. При контакте двух металлов различной активности с электролитом образуется гальваническая пара. Электроныпереходят от более активного металла к менее активному,при этом более активный металл разрушается; • по условиям протекания коррозийного процесса - контактно-электрохимическая коррозия, вызванная контактом металлов, имеющих разные стационарные потенциалы в данном электролите; контактная (в зоне контакта разнородных металлов в среде электролита); щелевая, протекающая на участках поверхности возле конструкционных или технологических зазоров между двумя металлами, а также в местах неплотного контакта металла с неметаллическим коррозийно-инертным материалом; избирательная (компонентно-избирательная и структурно-избирательная), связанная с повышенной коррозийной активностью одного из компонентов сплава; коррозийно-эрозионная (фреттинг-коррозия), обусловленная одновременным воздействием коррозийной среды и микроскопических смещений сдвига в результате вибрации в местах контакта плотно сжатых или катящихся одна по другой деталей; коррозийная кавитация, являющаяся результатом коррозийного и одновременно ударного воздействия из-за образования кавитационных полостей в жидкости; коррозия под напряжением (стресс-коррозия), сопровождающаяся растрескиванием металла в результате одновременного воздействия растягивающих напряжений и агрессивной среды. Необходимым условием коррозийного растрескивания является наличие специфических компонентов в составе коррозийной среды. Для сплавов на основе меди таким компонентом является аммиак, для нержавеющих сталей - хлориды и щелочи, в то время как в растворах серной, азотной и уксусной кислоты, а также в чистой воде они не подвержены этому виду разрушения.
Следует иметь в виду, что при коррозии под напряжением растрескивание может произойти и в результате наводороживания. Этот вид разрушения называется водородным растрескиванием (из-за давления до 70...150 атм. в зонах скопления водородомолизации, а также из-за облегчения роста трещин в результате снижения пластичности наводорожеиного металла перед ее вершиной). Коррозийная усталость также относится к типу коррозийного растрескивания под напряжением. Однако в этом случае напряжения не статические, а переменные. Коррозийно-усталостное разрушение начинается при одновременном воздействии на металл циклических напряжений и коррозийных повреждений в виде язв, каверн и межкристаллитной коррозии. Эти повреждения являются очагами зарождения многочисленных трещин, разветвляющихся по мере роста и заканчивающихся пучками (напоминающими корневую систему растений), ориентированными в разные стороны. Коррозийно-усталостное повреждение металла проявляется понижением предела его выносливости, который при этом непрерывно понижается с увеличением числа циклов нагружений. Другими словами, четко выраженный горизонтальный участок, соответствующий пределу неограниченной выносливости, на кривой усталости металла с коррозийно-усталостными трещинами отсутствует.
По характеру коррозийного разрушения на поверхности или в объеме металла коррозию разделяют на сплошную, равномерную по всей поверхности или неравномерную на различных участках и местную. Местную коррозию подразделяют на следующие виды: • пятнами, диаметр которых больше глубины прокорродировавшего слоя металла; • язвенная, в виде каверн, диаметр которых соизмерим с их глубиной; • питтинговая или точечная в виде множества отдельных точек диаметром 0,1...2 мм значительной глубины; • межкристаллитная, характеризуемая избирательным растворением металла по границам зерен; • ножевая (является разновидностью межкристаллитной), разрезающая металл словно ножом вдоль шва в зоне термического влияния сварки и возникающая при использовании некоторых сплавов в особо агрессивных условиях; • подповерхностная, начинающаяся от точечных поражений и распространяющаяся в стороны под очень тонким, например наклепанным, слоем металла, который затем вздувается пузырями или шелушится; • ручейковая в виде узкой полоски на внутренней поверхности нефтепровода, обусловленная потоком нефти; • нитевидная, возникающая под защитными покрытиями при их местном повреждении под действием капиллярных сил. Особо опасными видами местной коррозии вследствие трудности их обнаружения являются межкристаллитная, стресс-коррозия (коррозийное растрескивание под напряжением), а также ножевая коррозия. Способность сопротивляться разрушающему воздействию коррозийной среды характеризует коррозийную стойкость металла. ГОСТ 9.908-90 устанавливает десятибалльную шкалу коррозийной стойкости металлов при условии их равномерной коррозии (табл.11.1).
Таблица 11.1
Наряду с металлами состояние оборудования определяется также состоянием материалов уплотнительных устройств. Эластичные герметизирующие материалы испытывают на стойкость к воздействию агрессивных сред при заданных температурах и продолжительности испытаний.
В сумме косвенные и прямые убытки от коррозии металлов и затраты на защиту от нее в развитых странах составляют около 4 % валового национального дохода. Часть этих затрат неизбежна, тем не менее потери от коррозии можно существенно сократить при использовании специальных методов и средств борьбы с ней. Требования к защите промышленного оборудования от коррозии установлены Единой системой стандартов защиты от коррозии и старения материалов (ЕСЗКС). Основные количественные показатели различных видов коррозии и коррозийной стойкости материалов и методы испытаний на коррозию стандартизованы целой группой ГОСТов (около 40). По данным ООО НТЦ «Диатэкс» [12], на долю общей коррозии (утонение стенки) приходится не более 28 % отказов нефтехимического оборудования из-за коррозийных повреждений. Более важное значение имеют другие виды коррозии, при которых повреждения носят локальный характер, т. е. сосредоточены на ограниченном участке поверхности металла. Основная масса отказов обусловлена коррозийным растрескиванием (~ 24 %), межкристаллитной коррозией (~ 15 %), питтинговой коррозией (~ 14 %), коррозийно-механическим износом (~ 7 %) и другими видами коррозии (~ 13 %). Особо следует отметить повреждение металла под действием водорода (водородное растрескивание), которое не относится к коррозии, но вызывается ею. Определяющими параметрами, приводящими оборудование, подвергшееся коррозии, в предельное состояние, являются: потеря прочности при уменьшении толщины стенки; наличие растрескивания металла, коррозийных язв, питтинга в зоне сварных швов; распространение дефектов (трещин, коррозийных язв и др.) на регламентированную нормативной документацией площадь и глубину. Процессы зарождения и развития макродефектности в элементах конструкций определяются следующими факторами: • величиной эксплуатационных нагрузок; • величиной остаточных напряжений после сварки; • химическим составом и структурой материала. Вклад химсостава и структуры в образование макродефектности особенно весом для таких опасных явлений, как коррозийное растрескивание под напряжением, стресс-коррозия, сульфидное растрескивание и т.д. Наличие крупнозернистой и неоднородной структуры также способствует возникновению и развитию межзеренного разрушения и образованию трещин. Данный эффект в большей степени встречается в околошовной зоне сварных соединений — зоне термического влияния (ЗТВ). Практика технического диагностирования показывает, что в элементах конструкций, имеющих крупнозернистую структуру (с размером ферритных зерен 100...300 мкм и более), доля межзеренного разрушения достигает 35...40%, что облегчает зарождение и развитие трещин под воздействием остаточных сварочных, а также эксплуатационных напряжений. Деградация (старение) материалов, включая и конструкционные стали, с течением времени проявляется в ухудшении механических свойств, определяющихся в первую очередь их химическим составом и микроструктурой, и обусловлена термодинамической неравновесностью исходного состояния материала и постепенным приближением его структуры к равновесному состоянию в условиях диффузной подвижности атомов. Анализ эксплуатационных факторов, действующих на металл, позволяет выделить следующие процессы, приводящие его к старению: • разупрочнение - проявляется в том, что прочностные характеристики металла (временное сопротивление или условный предел текучести) отличаются от исходных (нормативных) более чем на 5 % в меньшую сторону. Может быть следствием длительного пребывания металла при высокой температуре, например во время пожара; • циклическое воздействие нагрузок - вызывает микропластические деформации в зонах концентрации напряжений в результате накопления дислокаций, ускоряющих развитие повреждаемости металла; • охрупчивание - является наиболее опасным следствием изменения физико-механических свойств материала (применительно к сталям, имеющим объемно-центрированную кубическую решетку: углеродистым и малолегированным). Охрупчивание сдвигает область хрупкого разрушения в область положительных температур, резко снижает трещиностойкость и приводит к внезапному разрушению конструкции. Изменение механических свойств, обусловленных развитием процессов охрупчивания, выражается, с одной стороны, в увеличении твердости материала и предела его текучести, с другой - в снижении вязко-пластических показателей, показателей ударной вязкости и трещиностойкости. В различных нормативных документах используются различные предельные показатели, характеризующие процессы охрупчивания. Так, в ПБ 03-605 - 03 «Правила устройства вертикальных стальных резервуаров для нефти и нефтепродуктов» приведена минимальная ударная вязкость материала. Для шаровых резервуаров и газгольдеров для хранения сжиженных газов под давлением в соответствии с РД 03-380-00 предельными являются увеличение отношения предела текучести к временному сопротивлению свыше 0,75 для легированных сталей и свыше 0,65 для углеродистых, при этом относительное удлинение для легированных сталей не должно быть менее 17 %, а для углеродистых - менее 19 %. Для стальных подземных газопроводов по РД 12-411- 01 для труб из малоуглеродистой стали допустимое отношение фактического предела текучести к временному сопротивлению, приведенных к температуре 20 °С, должно быть не более 0,9, ударная вязкость КС11 - не менее 30 Дж/см2. Деградация наиболее характерна для полимерных материалов. Она приводит к необратимому изменению свойств под воздействием механических или термических напряжений, солнечного света, газовых и жидкостных химических сред, ионизирующих излучений и других факторов. Причины старения полимерных материалов - химические и структурные превращения макромолекул. Следствие старения - ухудшение механических характеристик и последующее разрушение полимерного изделия.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|