Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Квантово-механическая модель атома




Современная модель атома является развитием планетарной модели Бора-Резерфорда. Согласно современной модели, ядро атома состоит из положительно заряженных протонов и не имеющих заряда нейтронов и окружено отрицательно заряженными электронами. Однако представления квантовой механики не позволяют считать, что электроны движутся вокруг ядра по сколько-нибудь определённым траекториям (неопределённостькоординаты электрона в атоме может быть сравнима с размерами самого атома).

Химические свойства атомов определяются конфигурацией электронной оболочки и описываются квантовой механикой. Положение атома в таблице Менделеева определяется электрическим зарядом его ядра (то есть количеством протонов), в то время как количество нейтронов принципиально не влияет на химические свойства; при этом нейтронов в ядре, как правило, больше, чем. Если атом находится в нейтральном состоянии, то количество электронов в нём равно количеству протонов. Основная масса атома сосредоточена в ядре, а массовая доля электронов в общей массе атома незначительна (несколько сотых процента массы ядра).

Массу атома принято измерять в атомных единицах массы, равных 112 от массы атома стабильного изотопа углерода 12C.

В классической механике рассматривается два вида движения: движение тела с локализацией перемещающегося объекта в каждой точке траектории в определенный момент времени и движение волны, делокализованной в пространстве среды. Для микрообъектов такое разграничение движения невозможно. Эту особенность движения называют корпускулярно-волновым дуализмом.

Корпускулярно-волновой дуализм - способность микрочастицы, обладающей массой, размерами и зарядом, одновременно проявлять и свойства, характерные для волн, например, способность к дифракции. В зависимости от того, какие свойства частиц изучаются, они проявляют либо одни, либо другие свойства.
Автором идеи корпускулярно-волнового дуализма стал А. Эйнштейн, который предложил рассматривать кванты электромагнитного излучения - фотоны - как движущиеся со скоростью света частицы, имеющие нулевую массу покоя. Их энергия равна

E = mc 2 = h ν = hc / λ,

где m - масса фотона, с - скорость света в вакууме, h - постоянная Планка, ν - частота излучения, λ - длина волны.

В 1924 г. французский физик Л. де Бройль предположил, что корпускулярно-волновыми свойствами обладает не только фотон, но и любая другая частица, движущаяся со скоростью v. Он получил уравнение, связывающее скорость движения частицы с длиной волны производимого ей электромагнитного излучения (уравнение де Бройля):

λ = h / mv,

где m - масса частицы, v - ее скорость, h - постоянная Планка; величина λ получила название длины волны де-Бройля.

Для объектов, обладающих сравнительно большой массой, волновые свойства обнаружить не удается. Так, для тела массой 1 г, летящего со скоростью 1 м/с, длина волны де-Бройля имеет порядок 1·10−30 м, что на 15 порядков меньше размера ядра атома, и не поддается измерению. В то же время для нейтрона массой около 1,7·10−27 кг, движущегося со скоростью 500 м/с, длина волны де Бройля составляет уже примерно 1·10−9 м. Этой величиной пренебрегать уже нельзя.

Гипотеза де Бройля была подтверждена экспериментально. В 1927 г. американские физики К. Дэвиссон и Л. Джермер и независимо от них англичанин Дж.-П. Томсон обнаружили дифракцию электронов на кристалле никеля.

В 1927 г. немецкий физик-теоретик В. Гейзенберг сформулировал принцип неопределенности, заключающийся в принципиальной невозможности одновременно точно определить положение микрочастицы в пространстве и ее импульс:

Δ px · Δ xh / 2π,

где Δ px = m Δ vx x - неопределенность (ошибка в определении) импульса микрообъекта по координате х; Δ x - неопределенность (ошибка в определении) положения микрообъекта по этой координате.

Таким образом, чем точнее определена скорость, тем меньше известно о местоположении частицы, и наоборот.

Поэтому для микрочастицы становится неприемлемым понятие о траектории движения, поскольку оно связано с конкретными координатами и импульсом частицы. Можно лишь говорить о вероятности обнаружить ее какой-то областях пространства. Произошел переход от "орбит движения" электронов, введенных Бором, к понятию орбитали - области пространства, где вероятность пребывания электронов максимальна.

Наиболее удобным методом описания электронного строения атома оказалось решение волнового уравнения Шрёдингера.

где ψ - волновая функция (аналог амплитуды для волнового движения в классической механике), которая характеризует движение электрона в пространстве как волнообразное возмущение; x, y, z - координаты, m - масса покоя электрона, к - волновой вектор.

Решениями уравнения Шрёдингера являются волновые функции. Для одноэлектронной системы (атома водорода) выражение для потенциальной энергии электрона имеет простой вид:

E p = − e 2 / r,

где e - заряд электрона, r - расстояние от электрона до ядра.

Чтобы решить волновое уравнение, надо разделить его переменные. Для этого заменяют декартовы координаты x, y, z на сферические r, θ, φ. Тогда волновую функцию можно представить в виде произведения трех функций, каждая из которых содержит только одну переменную:

ψ(x, y, z) = R (r) Θ(θ) Φ(φ)

Функцию R (r) называют радиальной составляющей волновой функции, а Θ(θ) Φ(φ) - ее угловыми составляющими.

В ходе решения волнового уравнения вводятся целые числа - так называемые квантовые числа (главное n, орбитальное l и магнитное ml). Функция R (r) зависит от n и l, функция Θ(θ) - от l и ml, функция Φ(φ) - от ml.

Геометрическим образом одноэлектронной волновой функции является атомная орбиталь. Она представляет собой область пространства вокруг ядра атома, в которой высока вероятность обнаружения электрона (обычно выбирают значение вероятности 90-95%). Это слово происходит от латинского " орбита " (путь, колея), но имеет другой смысл, не совпадающий с понятием траектории (пути) электрона вокруг атома, предложенным Н. Бором для планетарной модели атома. Контуры атомной орбитали - это графическое отображение волновой функции, полученной при решении волнового уравнения для одного электрона.

Квантовые числа

Квантовые числа, возникающие при решении волнового уравнения, служат для описания состояний квантово-химической системы. Каждая атомная орбиталь характеризуется набором из трех квантовых чисел: главного n, орбитального l и магнитного ml.

Главное квантовое число n характеризует энергию атомной орбитали. Оно может принимать любые положительные целочисленные значения. Чем больше значение n, тем выше энергия и больше размер орбитали. Решение уравнения Шрёдингера для атома водорода дает следующее выражение для энергии электрона:

E = −2π2 me 4 / n 2 h 2 = −1312,1 / n 2 (кДж/моль)

Таким образом, каждому значению главного квантового числа отвечает определенное значение энергии электрона. Уровни энергии с определенными значениями n иногда обозначают буквами K, L, M, N... (для n = 1, 2, 3, 4...).

Орбитальное квантовое число l характеризует энергетический подуровень. Атомные орбитали с разными орбитальными квантовыми числами различаются энергией и формой. Для каждого n разрешены целочисленные значения l от 0 до (n −1). Значения l = 0, 1, 2, 3... соответствуют энергетическим подуровням s, p, d, f.

Форма s -орбиталей сферическая, p -орбитали напоминают гантели, d - орбитали четырехлепесткового цветка или удвоенной гантели, f -орбитали имеют более сложную форму.

Магнитное квантовое число ml отвечает за ориентацию атомных орбиталей в пространстве. Для каждого значения l магнитное квантовое число ml может принимать целочисленные значения от −l до +l (всего 2 l + 1 значений). Например, р -орбитали (l = 1) могут быть ориентированы тремя способами (ml = -1, 0, +1).

Квантовые числа для электрона в атоме:

главное квантовое число n
орбитальное квантовое число l
магнитное квантовое число ml
спиновое квантовое число ms

Максимальное число электронов в электронных оболочках и подоболочках. Принцип Паули, правило Хунда. Последовательность энергетических уровней в многоэлектронных атомах. Правила Клечковского.

 

Электронная оболочка атома — область пространства вероятного местонахождения электронов, характеризующихся одинаковым значением главного квантового числа n и, как следствие, располагающихся на близких энергетических уровнях. Число электронов в каждой электронной оболочке не превышает определенного максимального значения.

Электронные оболочки обозначаются буквами K, L, M, N, O, P, Q или цифрами от 1 до 7. Подуровни оболочек обозначаются буквами s, p, d, f, g, h, i или цифрами от 0 до 6. Электроны внешних оболочек обладают большей энергией, и, по сравнению с электронами внутренних оболочек, находятся дальше от ядра, что делает их более важными в анализе поведения атома в химических реакциях и в роли проводника, так как их связь с ядром слабее и легче разрывается.

Количество электронов в каждой оболочке вычисляется по формуле: 2N2

            Итого
1 (К)            
2 (L)            
3 (M)            
4 (N)            
5 (O)            

Каждая оболочка состоит из одного или нескольких подуровней, каждый из которых состоит из атомных орбиталей. К примеру, первая оболочка (K) состоит из одного подуровня «1s». Вторая оболочка (L) состоит из двух подуровней, 2s и 2p. Третья оболочка (M) — из «3s», «3p» и «3d». Четвертая (N) - из «4s», «4p», «4d», «4f». Возможные варианты подуровней оболочек приведены в следующей таблице:

Обозначение подуровня l Макс. кол-во электронов Содержание в оболочках Историческое наименование
S     В каждой sharp
P     Во всех, начиная со 2 principal
D     Во всех, начиная с 3 diffuse
F     Во всех, начиная с 4 fundamental
G     Во всех, начиная с 5  
H     Во всех, начиная с 6  
I     Во всех, начиная с 7  

Валентная оболочка — самая внешняя оболочка атома. Электроны этой оболочки зачастую неверно называют валентными электронами, то есть электронами, определяющими поведение атома в химических реакциях. С точки зрения химической активности, наименее активными считаются атомы, в которых валентная оболочка окончательно заполнена (инертные газы). Наибольшей химической активностью обладают атомы, в которых валентная оболочка состоит всего из одного электрона (щелочные металлы), и атомы, в которых одного электрона не хватает для окончательного заполнения оболочки (галогены).

Есть и другое объяснение. Поведение атома в химических реакциях определяют электроны, обладающие большей энергией, то есть те электроны, которые расположены дальше от ядра. Электроны внутренних подуровней оболочек имеют меньшую энергию, чем электроны внешних подуровней. Несмотря на то, что электроны подуровня оболочки 3d могут не принадлежать к т. н. валентной оболочке, они могут иметь энергию большую, чем электроны подуровня оболочки 4s, что делает их валентными электронами.

Распределение электронов в многоэлектронном атоме основано на принципе минимума энергии, принципе В.Паули, правиле Ф.Хунда и правиле Клечковского.

Принцип минимума энергии: Электрон в первую очередь располагается в пределах электронной подоболочки с наинизшей энергией. Вначале заполняются орбитали, характеризующиеся наименьшей потенциальной энергией.

Принцип Паули: В атоме не может быть двух электронов, у которых все четыре квантовых числа были бы одинаковыми. Следовательно, каждая орбиталь, характеризующаяся определенными значениями n,? и m?, может быть занята не более чем двумя электронами, спины которых имеют противоположные знаки. Такие электроны называются спаренными. Пользуясь принципом Паули, можно подсчитать, какое максимальное число электронов может находиться на каждом уровне и подуровне, т.е. определить емкость уровней и подуровней. Количество орбиталей на подуровне определяется количеством возможных значений магнитного квантового числа, т.е. 2? + 1 значение. Так как на каждой орбитали (определенное значение квантовых чисел n,? и m?) может разместиться два электрона, обладающие разными значениями спина, то максимальное количество электронов, которое можно разместить на данном подуровне равно: 2(2? + 1). Максимальное количество электронов, которое может находиться на данном уровне, характеризующемся главным квантовым числом n, равно 2n2.

Правило Хунда: В наиболее устойчивом состоянии атома электроны размещаются в пределах электронной подоболочки так, чтобы их суммарный спин был максимален.

Так, например, у атома азота на внешнем электронном уровне находится два и три р-электрона. Здесь электроны на орбиталях изображены стрелками, направленными вверх или вниз в зависимости от знака спинового квантового числа. s-Подуровень содержит единственную орбиталь, на которой находится два электрона с противоположными спинами в соответствии с принципом Паули. В соответствии с правилом Хунда минимум энергии будет обладать конфигурация, в которой на каждой из трех р-орбиталей будет находиться по одному электрону с одинаково направленными спинами, поэтому суммарный спин будет максимальным (±3/2):

Первое правило Клечковского: Электрон обладает наинизшей энергией на той электронной подоболочке, где сумма главного и орбитального квантового числа минимальна. Е = min при n +? = min. В соответствии с первым правилом Клечковского заполнение подуровней электронами происходит в порядке от подуровней с минимальным значением суммы (n +?) к подуровням большими значениями n +?. Если сумма (n +?) одинакова для рассматриваемых электронных подоболочек, при распределении электронов используется второе правило Клечковского: Электрон обладает наинизшей энергией на подоболочке с наименьшим значением главного квантового числа.

 

Современная формулировка периодического закона. Структура периодической системы. Периоды, группы, подгруппы. Изменение свойств элементов в периодической системе. Периодический закон и его роль в изучении химии. Изменение кислотно-основных свойств соединений по группам и периодам периодической системы.

Современная формулировка периодического закона такова:
«свойства химических элементов (т.е. свойства и форма образуемых ими соединений) находятся в периодической зависимости от заряда ядра атомов химических элементов».

Графическим изображением периодического закона является периодическая система химических элементов.

Периодическая система составлена в виде таблицы, в которой химические элементы расположены в определенном порядке: по мере роста их атомных масс. Сейчас существует много видов изображения Периодической системы. Наиболее распространенным является изображение в виде таблицы с расположением элементов слева направо. Все химические элементы в Периодической системе объединены в периоды и группы. Периодическая система включает семь периодов и восемь групп. Периодами называют горизонтальные ряды химических элементов, в которых свойства элементов изменяются от типичных металлических к неметаллическим. Вертикальные колонки химических элементов, которые содержат элементы, схожие по химическим свойствам, образуют группы химических элементов.

Первый, второй и третий периоды называют малыми, поскольку они содержат небольшое количество элементов (первый — два элемента, второй и третий — по восемь элементов). Элементы второго и третьего периодов называют типовыми, их свойства закономерно изменяются от типичного металла до инертного газа. Все остальные периоды называют большими (четвертый и пятый содержат по 18 элементов, шестой — 32 и седьмой — 24 элемента). Особое сходство свойств проявляют элементы, находящиеся внутри больших периодов, в конце каждого четного ряда. Это так называемые триады: Ферум — Кобальт — Никол, образующих семью железа, и две другие: Рутений — Родий — Палладий и Осмий — Иридий — Платина, которые образуют семью платиновых металлов (платиноидов).

В нижней части таблицы Д. И. Менделеева расположены химические элементы, образующие семью лантаноидов и семью актиноидов. Все эти элементы формально входят в состав третьей группы и идут после химических элементов лантана (номер 57) и актиния (номер 89). Периодическая система элементов содержит десять рядов. Малые периоды (первый, второй и третий) состоят из одного ряда, большие периоды (четвертый, пятый и шестой) содержат по два ряда каждый. В седьмом периоде находится один ряд.

Каждый большой период состоит из четного и нечетного рядов. В парных рядах содержатся элементы металлы, в нечетных рядах свойства элементов изменяются так, как в типовых элементов, т.е. от металлических до выраженных неметаллических. Каждая группа таблицы Д. И. Менделеева состоит из двух подгрупп: главной и побочной. В состав главных подгрупп входят элементы как малых, так и больших периодов, то есть главные подгруппы начинаются либо с первого, или второго периода. В состав побочных подгрупп входят элементы только больших периодов, т.е. побочные подгруппы начинаются лишь с четвертого периода.

В периодической зависимости находятся такие свойства атома, которые связанны с его электронной конфигурацией: атомный радиус, энергия ионизации, электроотрицательность.

Рассмотрим изменение свойств атомов и их соединений в зависимости от положения в периодической системе химических элементов.

Неметалличность атома увеличивается при движении в периодической таблице слева направо и снизу вверх. В связи с этим основные свойства оксидов уменьшаются, а кислотные свойства увеличиваются в том же порядке — при движении слева направо и снизу вверх. При этом кислотные свойства оксидов тем сильнее, чем больше степень окисления образующего его элемента

По периоду слева направо основные свойства гидроксидов ослабевают, по главным подгруппам сверху вниз сила оснований увеличивается. При этом, если металл может образовать несколько гидроксидов, то с увеличением степени окисления металла, основные свойства гидроксидов ослабевают.

По периоду слева направо увеличивается сила кислородосодержащих кислот. При движении сверху вниз в пределах одной группы сила кислородосодержащих кислот уменьшается. При этом сила кислоты увеличивается с увеличением степени окисления образующего кислоту элемента.

По периоду слева направо увеличивается сила бескислородных кислот. При движении сверху вниз в пределах одной группы сила бескислородных кислот увеличивается.

С открытием Периодического закона химия перестала быть описательной наукой – она получила инструмент научного предвидения. Этот закон и его графическое отображение – таблица периодической системы химических элементов Д.И. Менделеева – выполнили все три важнейшие функции теоретического знания: обобщающую, объясняющую и прогностическую. На их основе ученые:

а) Систематизировали и обобщили все сведения о химических элементах и образуемых ими веществах;

б) Дали обоснование различным видам периодической зависимости, существующим в мире химических элементов, объяснив их на основе строения атомов элементов.

в) Предсказали, описали свойства еще не открытых химических элементов и образованных ими веществ, а также указали пути их открытия.

На основе закона и таблицы Д.И. Менделеева были предсказаны и открыты благородные газы. И сейчас этот закон служит путеводной звездой для открытия или искусственного создания новых химических элементов.

Открытие Периодического закона и создание таблицы Периодической системы химических элементов Д.И. Менделеевым стимулировало поиск причин взаимосвязи элементов, способствовало выявлению сложной структуры атома и развитию учения о строении атома. Это учение, в свою очередь, позволило вскрыть физический смысл Периодического закона и объяснить расположение элементов в Периодической системе. Оно привело к открытию атомной энергии и использованию ее для нужд человечества.

Таким образом, Периодический закон и система открыли новую эру в химии и физике, явились исходным пунктом для новых изысканий и открытий. Также периодический закон сыграл большое значение и как основной закон природы в развитии материалистической философии.

 

Поделиться:





Читайте также:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...