Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Факторы, влияющие на поляризацию ионов




И полязизуемость, и поляризующее действие ионов зависит от электронной структуры, заряда и размера иона. Считают, что поляризуемость иона обусловлена преимущественно деформацией внешней электронной оболочки. Она усиливается с ростом числа внешних электронов. Максимальная поляризуемость - у ионов, имеющих 18-электронные внешние оболочки. Для ионов элементов с одинаковым числом внешних электронов (находящихся в одной группе Периодической системы) поляризуемость ионов растет с увеличением порядкового номера. Это связано с удалением внешних электронов от ядра и увеличением экранирования ядра внутренними электронами.

Если элемент образует несколько разных ионов, то поляризуемость иона уменьшается с ростом его заряда (и, следовательно, уменьшением ионного радиуса). В ряду ионов, имеющих одинаковую электронную конфигурацию, поляризуемость растет с уменьшением заряда (например, в ряду Mg2+ − Na+ − Ne0 − F − O2−).

Поляризующее действие, напротив, тем значительнее, чем больше заряд, чем меньше радиус и чем устойчивее электронная оболочка. Наибольшее поляризующее действие оказывают те ионы, которые сами слабо поляризуются, и наоборот.

Поскольку для анионов характерны большие размеры и малый заряд, а их электронная структура, как правило, отвечает структуре благородного газа, они обладают сильной поляризуемостью и слабым поляризующим действием.

Поэтому обычно рассматривают лишь поляризацию аниона катионом. Если электронная оболочка катиона легко деформируются, то возникающий в нем диполь усиливает его поляризующее действие на анион, а анион начинает оказывать дополнительное действие на катион. Этот эффект для одновременно поляризующихся катионов и анионов приводит к появлению дополнительного поляризационного эффекта. Он особенно силен для катионов с 18-электронной внешней оболочкой.

Деформация электронной оболочки в результате поляризации приводит к уменьшению межъядерного расстояния, превращая ионную связь в полярную ковалентную. Чем выше поляризуемость электронной оболочки аниона, тем больше вклад ковалентной составляющей. Наоборот, чем ниже поляризация аниона, тем ближе соединение к ионному типу.

 

Основные положения метода молекулярных орбиталей (МО). МО в двухатомных молекулах, образованных элементами I и II периодов. Связывающие, несвязывающие и разрыхляющие орбитали. Порядок связи в рамках метода МО.

 

Метод молекулярных орбиталей (МО) наиболее нагляден в его графической модели линейной комбинации атомных орбиталей (ЛКАО). Метод МО ЛКАО основан на следующих правилах.

1) При сближении атомов до расстояний химических связей из атомных орбиталей (АО) образуются молекулярные.

2) Число полученных молекулярных орбиталей равно числу исходных атомных.

3) Перекрываются атомные орбитали, близкие по энергии. В результате перекрывания двух атомных орбиталей образуются две молекулярные. Одна из них имеет меньшую энергию по сравнению с исходными атомными и называется связывающей, а вторая молекулярная орбиталь обладает большей энергией, чем исходные атомные орбитали, и называется разрыхляющей.

4) При перекрывании атомных орбиталей возможно образование и σ-связи (перекрывание по оси химической связи), и π-связи (перекрывание по обе стороны от оси химической связи).

5) Молекулярная орбиталь, не участвующая в образовании химической связи, носит название несвязывающей. Ее энергия равна энергии исходной АО.

6)На одной молекулярной орбитали (как, впрочем, и атомной) возможно нахождение не более двух электронов.

7)Электроны занимают молекулярную орбиталь с наименьшей энергией (принцип наименьшей энергии).

8)Заполнение вырожденных (с одинаковой энергией) орбиталей происходит последовательно по одному электрону на каждую из них.

Метод молекулярных орбиталей исходит из того, что каждую молекулярную орбиталь представляют в виде алгебраической суммы (линейной комбинации) атомных орбиталей. Например, в молекуле водорода в образовании МО могут участвовать только 1s атомные орбитали двух атомов водорода, которые дают две МО, представляющие собой сумму и разность атомных орбиталей 1s1 и 1s2 – МО± = C11s1 ±C21s2.

Электронная плотность этих двух состояний пропорциональна |MO±|2. Поскольку в молекуле водорода взаимодействие возможно только по оси молекулы, то каждая из MO±может быть переобозначена как σсв = 1s1 + 1s2 и σ* = 1s1 – 1s2 и названа соответственно связывающей (σсв) и разрыхляющей (σ*) молекулярными орбиталями.

Электронная плотность посередине между ядрами для σсвзначительна, а для σ* равна нулю. Отрицательно заряженное электронное облако, сконцентрированное в межъядерном пространстве, притягивает положительно заряженные ядра и соответствует связывающей молекулярной орбитали σсв. А МО с нулевой плотностью в межъядерном пространстве соответствует разрыхляющей орбитали σ*. Состояния σсв и σ* отвечают разным уровням энергии, причем молекулярная орбиталь σсв имеет более низкую энергию по сравнению с исходными АО двух невзаимодействующих атомов водорода 1s1 и 1s2.

Переход двух электронов на МО σсв способствует понижению энергии системы; этот энергетический выигрыш равен энергии связи между атомами в молекуле водорода H–H. Даже удаление одного электрона с МО (σсв)2 c образованием (σсв)1 в молекулярном ионе Н2+ оставляет эту систему более устойчивой, чем отдельно существующие атом H и ион H+.

Если два электрона, опустившись на связывающую орбиталь, дают выигрыш в энергии, то третьему электрону приходится повысить свою энергию. Однако энергия, выигранная двумя электронами, больше, чем проигранная одним. Такая частица может существовать.

Известно, что щелочные металлы в газообразном состоянии существуют в виде двухатомных молекул. Попробуем убедиться в возможности существования двухатомной молекулы Li2, используя метод МО ЛКАО. Исходный атом лития содержит электроны на двух энергетических уровнях – первом и втором (1 s и 2 s).

Перекрывание одинаковых 1 s -орбиталей атомов лития даст две молекулярные орбитали (связывающую и разрыхляющую), которые согласно принципу минимума энергии будут полностью заселены четырьмя электронами. Выигрыш в энергии, получаемый в результате перехода двух электронов на связывающую молекулярную орбиталь, не способен компенсировать ее потери при переходе двух других электронов на разрыхляющую молекулярную орбиталь. Вот почему вклад в образование химической связи между атомами лития вносят лишь электроны внешнего (валентного) электронного слоя.

Перекрывание валентных 2 s -орбиталей атомов лития приведет также к образованию одной σ-связывающей и одной разрыхляющей молекулярных орбиталей. Два внешних электрона займут связывающую орбиталь, обеспечивая общий выигрыш в энергии (кратность связи равна 1).

Используя метод МО ЛКАО, рассмотрим возможность образования молекулы He2.

В этом случае два электрона займут связывающую молекулярную орбиталь, а два других – разрыхляющую. Выигрыша в энергии такое заселение двух орбиталей электронами не принесет. Следовательно, молекулы He2 не существует.
Заполнение молекулярных орбиталей происходит при соблюдении принципа Паули и правила Хунда по мере увеличения их энергии в такой последовательности:

σ1s < σ*1s < σ2s < σ*2s < σ2pz < π2px = π2py < π*2px =π*2py < σ*2pz

Значения энергии σ2p и π2p близки и для некоторых молекул(В22,N2) соотношение обратное приведённому: сначала π2p потом σ2p

Таблица 2 Энергия и порядок связи в молекулах элементов 1 периода

Молекулы и молекулярные ионы Электронная конфигурация Энергия связи кДж/моль Порядок связи
Н2+ s)1   0,5
Н2 s)2s*)1    
Н2- s)2s*)1 - 0,5
НеН s)2s*)1 - 0,5
Не2+ s)2s*)1   0,5
Не2 s)2s*)2 -  

Согласно методу МО п орядок связи в молекуле определяется разностью между числом связывающих и разрыхляющих орбиталей, деленный на два. Порядок связи может быть равен нулю (молекула не существует), целому или дробному положительному числу. При нулевой кратности связи, как в случае Не2,молекула не образуется.

Подобно электронным формулам, показывающим распределение электронов в атоме по атомным орбиталям, в методе МО составляются формулы молекул, отражающие их электронную конфигурацию. По аналогии с атомными s-, p-, d-, f- орбиталями молекулярные орбитали обозначаются греческими буквами s, p, d,,j.

Образование молекул из атомов элементов II периода может быть записано следующим образом (К – внутренние электронные слои):

Li 2 [KK(σs)2]

Be2 [KK(σs)2s*)2] молекула не обнаружена, как и молекула Не2

B2 [KK(σs)2s*)2 x)1y)1] молекула парамагнитна

C2 [KK(σs)2s*)2x)2y)2]

N2 [KK(σs)2s*)2x)2y)2z)2 ]

O2 [KK(σs)2s*)2z)2x)2y)2x)1y)1 ] молекула парамагнитна

F2 [KK(σs)2s*)2z)2x)2y)2x)2y)2 ]

Ne2 [KK(σs)2s*)2z)2x)2y)2x)2y)2z*)2 ] молекула не обнаружена

Наилучшим способом квантово-механической трактовки химической связи в настоящее время считается метод молекулярных орбиталей (МО). Однако он гораздо сложнее метода ВС и не столь нагляден, как последний.

Существование связывающих и разрыхляющих МО подтверждается физическими свойствами молекул. Метод МО позволяет предвидеть, что если при образовании молекулы из атомов электроны в молекуле попадают на связывающие орбитали, то потенциалы ионизации молекул должны быть больше, чем потенциалы ионизации атомов, а если электроны попадают на разрыхляющие орбитали, то наоборот.

 

Поделиться:





Читайте также:

E. движение ионов, разделение и изменение их концентрации в разных
II. Психические процессы, влияющие на безопасность.
Валютные отношения и валютная политика. Валютный курс и факторы на него влияющие.
Вопрос № 2. Факторы, влияющие на успешность консультативного процесса
Инвестиции, их роль в развитии макроэкономики. Факторы, влияющие на величину инвестиций. Инвестиции в российской экономике.
Инфляция и факторы, влияющие на нее.
Ионная связь. Ненаправленность и ненасыщенность ионной связи. Электростатическое взаимодействие ионов. Поляризуемость и поляризующая способность ионов.
Кейнсианская теория потребления. Функции потребления и сбережений. Факторы, влияющие на потребление и сбережение.
Конвективная теплоотдача. Факторы, влияющие на интенсивность теплоотдачи
Коррозия конструкционных материалов в пароводяном теплоносителе. Факторы, влияющие на коррозию в пароводяной среде.






Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...