Цели и задачи хронобиологии и хрономедицины. Классификация ритмов и припода ритмов.Эндогенные ритмы и доказательство эндогенной природы активных ритмов. Опыт Ж.де Мейрана. Правило Ашоффа
Стр 1 из 14Следующая ⇒ Влияние фотопериодических факторов на сезонную адаптацию у простейших и многоклеточных, на ритмы рождаемости. Роль мелатонина. Климатогеографические особенности влияния фотопериодизма на жизнедеятельность. Полярная ночь и полярный день. Проблема «светового загрязнения». Адаптация – это приспособление организма к определенным условиям среды за счет комплекса признаков – морфологических, физиологических, поведенческих. Существуют два принципиально разных типа адаптаций к температуре: Пассивный. (характерен для эктотермных (пойкилотермных) организмов (все таксоны органического мира, кроме птиц и млекопитающих). У этих организмов температура тела регулируется внешним теплом. Их активность зависит от внешних температурных условий: насекомые, ящерицы и многие другие животные при прохладной погоде становятся вялыми и малоподвижными. Многие виды животных при этом обладают способностью к выбору места с оптимальными условиями температуры, влажности и инсоляции (ящерицы греются на освещенных плитах горных пород). активный. (характерен для эндотермных организмов (птицы и млекопитающие), которые обеспечиваются теплом за счет собственной теплопродукции и способны активно регулировать производство тепла и его расходование. При этом температура тела меняется незначительно, ее колебания не превышают 2–4о даже при самых сильных морозах. Главные адаптации – химическая терморегуляция за счет выделения тепла (например, при дыхании) и физическая терморегуляция за счет теплоизоляционных структур (жировой прослойки, перьев, волос и т.д.). Биоритмы – другой характерный пример адаптаций организмов к изменениям условий среды, которые помогают регулировать температуру тела, Они заключаются в закономерных периодических изменениях физиологии или поведения организмов при смене времени суток, сезонов года, приливов и отливов, лунных фаз.
Суточные биоритмы ярко выражены у животных и человека: время активной деятельности и отдыха у разных видов меняется по разному. Дневные животные добывают пищу днем, для ночных (совы, летучие мыши) период бодрствования наступает с темнотой. С суточным биоритмом связаны десятки физиологических показателей (пульс, артериальное давление, температура тела и мн. др.), от которых зависит активность организма. Сезонные биоритмы ярко выражены и у животных, и у растений, особенно в районах со значительными изменениями климата по сезонам года. С временами года связаны ритмы размножения животных и их миграций (в первую очередь перелетных птиц), наступление фенологических фаз развития растений (бутонизация, цветение, плодоношение, сбрасывание листьев на зиму). Мелатонин — основной гормон эпифиза, регулятор суточных ритмов. Влияние на сезонную ритмику и размножение Так как продукция мелатонина зависит от длины светового дня, многие животные используют её как «сезонные часы». У людей, как и у животных, продукция мелатонина летом меньше, чем зимой. Таким образом, мелатонин может регулировать функции, зависящие от фотопериода — размножение, миграционное поведение, сезонную линьку. У видов птиц и млекопитающих, которые размножаются при длинном дне, мелатонин подавляет секрецию гонадотропинов и снижает уровень половой активности. У животных, размножающихся при коротком световом дне, мелатонин стимулирует половую активность. Влияние мелатонина на репродуктивную функцию у человека недостаточно изучено. В период полового созревания пиковая (ночная) концентрация мелатонина резко снижается. Зимой число менструальных циклов, не заканчивающихся овуляцией, в среднем выше, чем летом. У женщин с гипофизарной аменореей концентрация мелатонина достоверно выше, чем у здоровых. Эти данные позволяют предполагать, что мелатонин подавляет репродуктивные функции у женщин.
Циркадный ритм и сон Одним из основных действий мелатонина является регуляция сна. Мелатонин — основной компонент пейсмейкерной системы организма. Он принимает участие в создании циркадного (циркадианного) ритма: он непосредственно воздействует на клетки и изменяет уровень секреции других гормонов и биологически активных веществ, концентрация которых зависит от времени суток. Влияние светового цикла на ритм секреции мелатонина показано в наблюдении за слепыми. У большинства из них обнаружена ритмичная секреция гормона, но со свободно меняющимся периодом, отличающимся от суточного (25-часовой цикл по сравнению с 24-часовым суточным). То есть у человека ритм секреции мелатонина имеет вид циркадианной мелатониновой волны, «свободно бегущей» в отсутствие смены циклов свет-темнота. Сдвиг ритма секреции мелатонина происходит и при перелёте через часовые пояса. Полярная ночь — период, когда Солнце более 24 часов (то есть более суток) не появляется из-за горизонта. Полярный день — период, когда Солнце не заходит за горизонт дольше 1 суток. Световое загрязнение — осветление ночного неба искусственными источниками света, свет которых рассеивается в нижних слоях атмосферы. Иногда это явление также называют световым смогом. Причины светового загрязнения Основными источниками светового загрязнения являются крупные города и промышленные комплексы. Световое загрязнение создаётся уличным освещением, светящимися рекламными щитами или прожекторами. В Европе многие дискотеки направляют мощные пучки света в ночное небо. Больша́я часть излучаемого света направляется или отражается наверх, что создаёт над городами так называемые световые купола. Это вызвано неоптимальной и неэффективной конструкцией многих систем освещения, ведущей к расточительству энергии. Эффект осветления неба усиливается распространёнными в воздухе частицами пыли, так называемыми аэрозолями. Эти частицы дополнительно преломляют, отражают и рассеивают излучаемый свет.
Последствия светового загрязнения - Световое загрязнение влияет на устоявшуюся экосистему и имеет многочисленные последствия. Влияние на живые организмы: Искусственное осветление окружающей среды влияет на цикл роста многих растений. Распространённые источники белого света с большим удельным весом голубого света в спектре мешают ориентации многих видов насекомых, ведущих ночной образ жизни, а также сбивают с пути перелётных птиц, старающихся облетать очаги цивилизации. 52.Роль мелатонина в формировании суточной, сезонной ритмичности, и в адаптации к сезонным изменениям. Влияние мелатонина на репродуктивную функцию млекопитающих и на характер индивидуального развития. Основные этапы онтогенеза на которых изменяется продукция мелатонина, их значение. Все биологические ритмы находятся в строгой подчиненности основному водителю ритмов, расположенному в супрахиазматических ядрах гипоталамуса. Гормоном-посредником, доносящим руководящие сигналы до органов и тканей, собственно и является мелатонин. При этом характер ответа регулируется не только уровнем гормона в крови, но и продолжительностью его ночной секреции. Кроме этого, мелатонин обеспечивает адаптацию эндогенных биоритмов к постоянно меняющимся условиям внешней среды. В рамках суточного ритма организма мелатонин поддерживает цикл сна/бодрствования, суточные изменения двигательной активности и температуры тела. Концентрация его в крови нарастает с наступлением темноты и достигает своего максимума за 1-2 часа до пробуждения. В это время сон человека наиболее глубокий, а температура тела достигает своего минимума. С возрастом выработка мелатонина уменьшается, что влечет за собой повышение давление. Цели и задачи хронобиологии и хрономедицины. Классификация ритмов и припода ритмов.Эндогенные ритмы и доказательство эндогенной природы активных ритмов. Опыт Ж.де Мейрана. Правило Ашоффа Хронобиология— область биологии, исследующая периодические (циклические) феномены (биологические ритмы) в живой природе на всех уровнях организации с адаптацией к солнечным и лунным ритмам и порождаемым ими периодическим климатическим и погодным изменениям на Земле.
Биологические ритмы в живой природе имеют эндогенное происхождение и в связи с ритмическими изменениями внешней среды (фото-, термо-, магнито-, баропериодичность, др.) формируют временную организацию биологических систем в их единстве с неживой природой. С хронобиологией тесно связанахрономедицина. Хрономедицина – область медицины, изучающая роль биологических ритмов, их нарушений и методов оптимизации в механизмах, диагностике и лечении заболеваний. Правило Ашоффа. Каждому из нас известен циркадный цикл «бодрствование - сон». В 1959 году Ашофф обнаружил закономерность, которую Питтендриг предложил назвать «правилом Ашоффа». Под этим названием оно вошло в хронобиологию и историю науки. Правило гласит: «У ночных животных активный период (бодрствование) более продолжителен при постоянном освещении, в то время как у дневных животных бодрствование более продолжительно при постоянной темноте». И действительно, как впоследствии установил Ашофф, при длительной изоляции человека или животных в темноте цикл «бодрствование - сон» удлиняется за счет увеличения продолжительности фазы бодрствования. Из правила Ашоффа следует, что именно свет определяет циркадные колебания организма. Биологические ритмы и их классификация В сложной системе биоритмов, от коротких - на молекулярном уровне - с периодом в несколько секунд, до глобальных, связанным с годовыми изменениями солнечной активности живет и человек. Биологический ритм представляет собой один из важнейших инструментов исследования фактора времени в деятельности живых систем и их временной организации. Биологические ритмы или биоритмы - это более или менее регулярные изменения характера и интенсивности биологических процессов. Способность к таким изменениям жизнедеятельности передается по наследству и обнаружена практически у всех живых организмов. Их можно наблюдать в отдельных клетках, тканях и органах, в целых организмах и в популяциях.
2.Биологические ритмы признаны важнейшим механизмом регуляции функций организма, обеспечивающим гомеостаз, динамическое равновесие и процессы адаптации в биологических системах. 3.Установлено, что биологические ритмы, с одной стороны, имеют эндогенную природу и генетическую регуляцию, с другой, их осуществление тесно связано с модифицирующим фактором внешней среды, так называемых датчиков времени. Эта связь в основе единства организма со средой во многом определяет экологические закономерности. 5. Обнаружены биологические ритмы чувствительности организмов к действию факторов химической (среди них лекарственные средства) и физической природы. Это стало основой для развития хронофармакологии, т.е. способов применения лекарств с учетом зависимости их действия от фаз биологических ритмов функционирования организма и от состояния его временной организации, изменяющейся при развитии болезни. Биоритмы подразделяются на физиологические и экологические. Физиологические ритмы, как правило, имеют периоды от долей секунды до нескольких минут. Это, например, ритмы давления, биения сердца и артериального давления. Имеются данные о влиянии, например, магнитного поля Земли на период и амплитуду энцефалограммы человека. Экологические ритмы по длительности совпадают с каким-либо естественным ритмом окружающей среды. К ним относятся суточные, сезонные (годовые), приливные и лунные ритмы. Благодаря экологическим ритмам, организм ориентируется во времени и заранее готовится к ожидаемым условиям существования. Так, некоторые цветки раскрываются незадолго до рассвета, как будто зная, что скоро взойдет солнце. Многие животные еще до наступления холодов впадают в зимнюю спячку или мигрируют. Таким образом, экологические ритмы служат организму как биологические часы. Биологические ритмы описаны на всех уровнях, начиная от простейших биологических реакций в клетке и кончая сложными поведенческими реакциями. Таким образом, живой организм является совокупностью многочисленных ритмов с разными характеристиками. Ритм - это универсальное свойство живых систем. Процессы роста и развития организма имеют ритмический характер. Ритмическим изменениям могут быть подвержены различные показатели структур биологических объектов: ориентация молекул, третичная молекулярная структура, тип кристаллизации, форма роста, концентрация ионов и т.д. Существуют ритмические изменения чувствительности организма к повреждающим факторам внешней среды. В опытах на животных было установлено, что чувствительность к химическим и лучевым поражениям колеблется в течение суток очень заметно: при одной и той же дозе смертность мышей в зависимости от времени суток варьировала от 0 до 10 % Центральное место среди ритмических процессов занимает циркадианный ритм, имеющий наибольшее значение для организма. Понятие циркадианного (околосуточного) ритма ввел в 1959 году Халберг. Циркадианный ритм является видоизменением суточного ритма с периодом 24 часа, протекает в константных условиях и принадлежит к свободно текущим ритмам. Это ритмы с не навязанным внешними условиями периодом. Они врожденные, эндогенные, т.е. обусловлены свойствами самого организма. Период циркадианных ритмов длится у растений 23-28 часов, у животных 23-25 часов. Поскольку организмы обычно находятся в среде с циклическими изменениями ее условий, то ритмы организмов затягиваются этими изменениями и становятся суточными. Циркадианные ритмы обнаружены у всех представителей животного царства и на всех уровнях организации - от клеточного давления до межличностных отношений. В многочисленных опытах на животных установлено наличие циркадианных ритмов двигательной активности, температуры тела и кожи, частоты пульса и дыхания, кровяного давления и диуреза. Суточным колебаниям оказались подвержены содержания различных веществ в тканях и органах, например, глюкозы, натрия и калия в крови, плазмы и сыворотки в крови, гормонов роста и др. По существу, в околосуточном ритме колеблются все показатели эндокринные и гематологические, показатели нервной, мышечной, сердечно-сосудистой, дыхательной и пищеварительной систем. В этом ритме содержание и активность десятков веществ в различных тканях и органах тела, в крови, моче, поте, слюне, интенсивность обменных процессов, энергетическое и пластическое обеспечение клеток, тканей и органов. Этому же циркадианному ритму подчинены чувствительность организма к разнообразным факторам внешней среды и переносимость функциональных нагрузок. Всего к настоящему времени у человека выявлено около 500 функций и процессов, имеющих циркадианную ритмику. Биоритмы организма - суточные, месячные, годовые - практически остались неизменными с первобытных времен и не могут угнаться за ритмами современной жизни. У каждого человека в течение суток четко прослеживаются пики и спады важнейших жизненных систем. Важнейшие биоритмы могут быть зафиксированы в хронограммах. Основными показателями в них служат температура тела, пульс, частота дыхания в покое и другие показатели, которые можно определить только при помощи специалистов. Знание нормальной индивидуальной хронограммы позволяет выявить опасности заболевания, организовать свою деятельность в соответствии с возможностями организма, избежать срывов в его работе. Важное практическое значение имеет также исследование других многодневных ритмов, датчиком времени для которых являются такие периодические изменения в природе, как смена сезонов, лунные циклы и др. Хрономедицина. Ее основы. Понятие «Хроном», его компоненты. Циркадианная система. Доказательства эндогенности циркадианного ритма. Понятие о «свободно-текущем» ритме. Правило Ашоффа. Десинхроноз и его формы. Хронопатология. Хронотерапия. Хронофармакология. Хрономедицина — это область медицины, в которой используется представление о биологических ритмах, которые изучаются в рамках хронобиологии. Биологические ритмы — эторитмические проявления временной структуры организма, поэтому хрономедицина не исчерпывается одними только биологическими ритмами, а пытается рассмотреть всю «временную структуру организма» в целом. Хрономедицина (как и сама хронобиология) — это молодая область междисциплинарных исследований, которая находится в процессе становления. В хрономедицине находят свое применение методы математической обработки временных рядов, которые используются для анализа ритмических проявлений физиологических процессов организма. Таким образом хрономедицина оказывается на стыке наук: медицины (диагностика и лечение заболеваний), хронобиологии (разработка теоретических представлений) и математики(разработка методов математического анализа ритмических проявлений). Хроном- термин обозначающий комплексную временную организацию живых систем независимо от уровня организации и сложности, состоит из ритмов разных частот, тренды, шумы. Десинхронизация – состояние двух или более, ранее синхронизированных, ритмических переменных, переставших показывать те же частоты и акрофазные взаимоотношения и демонстрирующие изменение временных взаимосвязей: Внутренняя – десинхронизация одного от другого из двух или более ритмов в биосистеме путем появление ранее отсутствовавших отличий в частоте и изменения во временном отношении двух ритмов с той же частотой. Внешняя – десинхронизация биоритмов о т циклов окружающей среды. Десинхроноз – патологическое состояние, вызванное внешней или внутренней десинхронизацией биоритмов. Хронопатология – изменение биологической временной структуры индивидуума, предшествующие функциональным расстройствам или органическим заболеваниям и зависящим от времени проявления болезни. Хронофармокология и хронотерапия – лечения на основе индивидуального подхода(индивидуальные биоритмы). Ашоффа правило Физиолог Юрген Ашофф – основатель хронобиологии, установил в 1959 г. т.н. правило Ашоффа. Поскольку циркадные колебания организма тесно связаны с фотопериодичностью, у дневных животных бодрствование более продолжительно при постоянной темноте, в то время как у ночных животных активный период (бодрствование) более продолжителен при постоянном освещении.
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|