Предмет, задачи, методы генетики. Этапы развития генетики. Вклад ученых в развитие генетики. Значение генетики для медицины.
Гене́тика — наука о закономерностях наследственности и изменчивости. В зависимости от объекта исследования классифицируют генетику растений, животных, микроорганизмов, человека и другие; в зависимости от используемых методов других дисциплин — молекулярную генетику, экологическую генетику и другие. Идеи и методы генетики играют важную роль в медицине, сельском хозяйстве, микробиологической промышленности, а также в генетической инженерии. Предмет. Генетика изучает наследственность и изменчивость. Слово «генетика» придумал У. Бэтсон (1906), Он же определили науку как физиологию наследственности и изменчивости. Почему люди разнообразны, почему так похожи друг на друга как представители одного вида или как родственники? Ответ на эти вопросы дает генетика, и ответ – одинаков, потому, что каждый человек получил наследственные задатки – гены от своих родителей. Благодаря механизму наследования каждый индивидуум имеет черты сходства с предками. Задачи Основной задачей генетики является изучение следующих проблем: Хранение наследственной информации. Механизм передачи генетической информации от поколения к поколению клеток или организмов. Реализация генетической информации. Изменение генетической информации (изучение типов, причин и механизмов изменчивости). 5.Выявление наследственных заболеваний на ранних стадиях, изучение мутагенной активности
В развитии генетики можно выделить 3 этапа: 1 Этап (с 1900 по 1925 г.) – этап классической генетики. В этот период были переоткрыты и подтверждены на многих видах растений и животных законы Г.Менделя, создана хромосомная теория наследственности (Т.Г.Морган). Важнейшим событием в генетике XIX в. было формулирование Менделем его законов. Мендель рассматривал не наследуемость всех признаков организма сразу, а выделял наследуемость единичных, отдельных признаков, абстрагируя эти признаки от остальных. При этом он применял вариационно-статистический метод, демонстрируя возможности математического моделирования в биологии. Открытие Менделем закономерностей расщепления признаков показало, что возникающие у организмов рецессивные мутации не исчезают, а сохраняются в популяции в гетерозиготном состоянии. Этим были разрушены старые натурфилософские концепции о слитном, непрерывном характере наследственности, при котором она рассматривалась как некое континуальное образование (наподобие некой жидкости).
2 Этап (с1926 по 1953) – этап широкого развёртывания работ по искусственному мутагенезу (Г.Меллер и др.). в это время было показано сложное строение и дробимость гена, заложены основы биохимической, популяционной и эволюционной генетики, доказано, что молекула ДНК является носителем наследственной информации (О.Эвери), были заложены основы ветеринарной генетики. Тридцатые годы ХХ в. можно смело назвать расцветом теоретической генетики. Уже тогда было доказано существование генов, стало ясно, что они локализованы в хромосомах. В связи с этим следует назвать имена некоторых отечественных ученых, внесших значительный вклад в развитие генетической науки: Н.К. Кольцов, выдающийся организатор отечественной биологической науки, высказавший гипотезу о том, что при делении хромосомы сами себя повторяют в клетках (1928 г.); С.С. Четвериков – создатель эволюционно и популяционной генетики; А.С. Серебровский, выдвинувший идею о линейном строении и делимости генов; С.Н. Давиденков и С.Г. Левит – основатели медицинской генетики и др.
3 Этап (начинается с 1953 г.) – этап современной генетики, для которого характерны исследования явлений наследственности на молекулярном уровне. Была открыта структура ДНК (Дж. Утсон), расшифрован генетический код (Ф.Крик), химическим путём синтезирован ген (Г. Корана). С середины ХХ в. классическая генетика перестала получать большую часть новой информации о механизмах наследственности. Эту роль в современной науке заняла молекулярная биология и её раздел – молекулярная генетика, науки, имеющие дело с конкретными молекулами ДНК, о существовании которых классическая генетика могла лишь догадываться. В 1953 г. биологом Дж. Уотсоном и физиком Ф. Криком была открыта пространственная структура основного вещества наследственности – ДНК. Большой вклад в развитие генетики внесли отечественные учёные. Научные генетические школы созданы Вавиловым и др. Получили искусственным путём мутации – Филиппов. Вавилов сформулировал закон гомологических рядов наследственной изменчивости. Карпеченко предложил метод преодоления бесплодия у некоторых гибридов. Четвериков – основатель учения о генетике популяций. Серебровский – показал сложное строение и дробимость гена.
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|