Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Цитоплазматическая наследственность. Роль в передаче наследственных заболеваний. Наследование зрительной невропатии Лебера и др.




Некоторые признаки (окраска плодов, цветков и листьев, высокая активность клеточного дыхания и др.) могут наследоваться без участия ядерного аппарата. Такое явление возможно благодаря тому, что некоторые клеточные структуры имеют свою автономную кольцевую молекулу ДНК и способны делиться сравнительно автономно от клетки. В эукариотических клетках нехромосомная ДНК содержится в хлоропластах и митохондриях. Молекулы ДНК этих органелл несут информацию о собственных белках, а также об иРНК и тРНК, участвующих в их синтезе. Передача генетической информации через цитоплазму получила название цитоплазматической (внеядерной, нехромосомной) наследственности. Поскольку наследственная информация передается по материнской линии через цитоплазму яйцеклетки, ее называют также материнской наследственностью. Непосредственное влияние материнского организма на развитие зародыша часто приводит к большему сходству потомства с матерью, поскольку условия эмбрионального развития организма полностью зависят от матери.

Наиболее полно изучены две формы цитоплазматической наследственности: пластидная и цитоплазматическая мужская стерильность.

ПЛАСТИДНАЯ НАСЛЕДСТВЕННОСТЬ

Среди органоидов цитоплазмы генетическая непрерывность впервые была установлена для пластид. У многих видов растений встречаются особи, лишенные окраски, или такие, у которых в листьях имеются отдельные неокрашенные участки ткани. Клетки их вообще не имеют видимых пластид или содержат пластиды, не способные образовывать хлорофилл. Растения, лишенные зеленой окраски, - альбиносы, нежизнеспособны и обычно погибают в фазе проростков. Но отдельные участки ткани без зеленой окраски развиваются в зеленом листе, питаясь за счет нормальных тканей, снабжающих их продуктами фотосинтеза.

ЦИТОПЛАЗМАТИЧЕСКАЯ СТЕРИЛЬНОСТЬ

У многих видов растений с обоеполыми цветками и однодомных изредка встречаются единичные особи со стерильными мужскими генеративными органами. Такие факты были известны еще Ч. Дарвину. Он их рассматривал как склонность вида переходить от однодомности к двудомности, которую в эволюционном отношении считал более совершенной. Таким образом, формирование особей, имеющих мужскую стерильность, представляет собой естественное явление эволюционного процесса.

Мужская стерильность бывает при отсутствии пыльцы или неспособны ее к оплодотворению и проявляется в трех основных формах:

Мужская генеративные органы – тычинки – совершенно не развиваются; подобные явление наблюдается у растений некоторых видов табака;

Пыльники в цветках образуются, но пыльца их нежизнеспособна; эта форма стерильности чаще всего встречается у кукурузы;

В пыльниках образуется нормальная пыльца, но они не растрескиваются и пыльца не попадает на рыльца; это очень редкое явление наблюдается иногда у некоторых сортов томата.

Оптическая нейропатияЛебера (атрофия зрительного нерва Лебера) — наследственное заболевание, характеризующееся быстро или постепенно развивающимися двусторонними нарушениями центрального зрения у соматически здоровых молодых людей.

Генетические исследования. В настоящее время доказано, что развитие нейропатииЛебера обусловлено точковыми мутациями в митохондриальной ДНК, приводящими к замене одной аминокислоты другой. Предполагаемое митохондриальное наследование оптической нейропатииЛебера было подтверждено в 1988 году.

67.Человек как специфический объект генетического анализа. Методы изучения наследственности человека. Кариотипирование и экспресс-анализ полового хроматина в медицине.

Схема регуляции транскрипции у прокариот или гипотеза оперона. Была предложена Жаковым и Моно в 1961 году на примере лактозного оперона.

Промотор

Инициатор

Оператор

Структурные гены

Терминатор

Регулятор

Репрессор (белок 2)

Белок (1) фермент – разложение лактозы

Лактоза (молекула, которая соединяется с белком-репрессором, при этом освобождается оперон. Репрессор блокирует оперон и синтеза нет)

Схама разработана в 1972 году Георгиевым Павловичем. Принцип регуляции (обратная связь) сохраняется, но механизмы более сложные. В Прокариотической клетке наследственный материал и аппарат биосинтеза белка пространственно не разобщены. Поэтому транскрипция и трансляция происходят почти одновременно. У эукариот:

Эти этапы разделены пространственно ядерной оболочкой

Во времени их разделяют процессы созревания и РНК, из которой должны быть ударены не кодирующие последовательности – интроны (процессинг).

Единица транскрипции у эукариот – транскриптон. Состоит из неинформативной и информативной зон. Неинформативная зона включает промотор + инициатор, группы генов оперторов. Информативная зона образована структурным геном, разделенным на экзоны и интроны. Заканчивается транскриптон терминатором. Работу транскриптона регулируют несколько генов-регуляторов, дающих или кодирующих синтез нескольких белков-репрессоров. Потому что индукторами эукариот являются сложные молекулы для расщепления которых требуется несколько ферментов.

С этих позиций человек интересует и генетику человека и медицинскую генетику

При изучении генетики человека используются следующие методы:
генеалогический (Этот метод основан на прослеживании какого-либо нормального или патологического признака в ряде поколений с указанием родственных связей между членами родословной)
•близнецовый (Близнецовый метод используется в генетике человека для того, чтобы оценить степень влияния наследственности и среды на развитие какого-либо нормального или патологического признака.)
популяционно-статистический (Этот метод позволяет изучить распространение отдельных генов в человеческих популяциях. Обычно производится непосредственное выборочное исследование части популяции либо изучают архивы больниц, родильных домов, а также проводят опрос путем анкетирования.)
•дерматоглифический
(Дерматоглифка – это изучение рельефа кожи на пальцах, ладонях и подошвенных поверхностях стоп, который образован эпидермальными выступами – гребнями, которые образуют сложные узоры.)
•биохимический
(Эти методы используются для диагностики болезней обмена веществ, причиной которых является изменение активности определенных ферментов)
•цитогенетический
(метод основан на микроскопическом исследовании хромосом)
гибридизации соматических клеток (Соматические клетки содержат весь объем генетической информации. Это дает возможность изучать многие вопросы генетики человека, которые невозможно исследовать на целом организме. Благодаря методам генетики соматических клеток человек как бы стал одним из экспериментальных объектов. Чаще всего используют клетки соединительной ткани (фибробласты) и лимфоциты крови. культивирование клеток вне организма позволяет получить достаточное количество материала для исследования. что не всегда возможно взять у человека без ущерба для здоровья)
•моделирования
(Теоретическую основу биологического моделирования в генетике дает закон гомологических рядов наследственной изменчевости, открытый Н.И. Вавиловым, согласно которому генетически близкие виды и роды характерезуются сходными рядами наследственной изменчивости. Исходя из этого закона, можно предвидеть, что в переделах класса млекопитающих (и даже за его пределами), можно обнаружить многие мутации, вызывающие такие же изменения фенотипических признаков, как и у человека. для моделирования определенных наследственных аномалий человека подбирают и изучают мутантные линии животных, имеющих сходные нарушения)

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...