Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Свойство площадей треугольников

Докажем, что площадь треугольника пропорциональна площади его образа при некотором аффинном преобразовании (2) с коэффициентом пропорциональности, равным определителю этого аффинного преобразования. [1]

Пусть точки M, N и K неколлинеарны, тогда точки M’, N’ и K’, являющиеся образами точек M, N и K при некотором аффинном преобразовании (2), также неколлинеарны. Найдём отношение площадей ориентированных треугольников MNK и M’ N’ K’. Воспользуемся формулой площади положительно ориентированного треугольника: ,

.                             (6)

Для координат точек M’, N’ и K’ выполняются равенства

Преобразуем формулу площади второго треугольника (6), подставив вместо координат его вершин их выражения через координаты вершин первого треугольника, получим:

После последовательных преобразований полученного выражения имеем: , то есть . Таким образом, площадь треугольника пропорциональна площади его прообраза с коэффициентом пропорциональности, равным определителю аффинного преобразования, что и требовалось доказать.

Следствие. Отношение площади треугольника к площади его образа при аффинном преобразовании является инвариантом этого аффинного преобразования.

Найденное свойство площадей треугольников можно обобщить на произвольные -угольники.

 

Род аффинного преобразования

Ориентация плоских фигур

Введём понятие ориентации плоских фигур, причём здесь можно ограничиться лишь рассмотрением ориентации треугольников: каждый треугольник может быть ориентирован двумя способами, то есть обход его контура может совершаться в двух взаимно противоположных направлениях – «по часовой стрелке» и «против часовой стрелки». Аффинные преобразования первого рода сохраняют ориентацию всех треугольников, а аффинные преобразования второго рода меняют её на противоположную.

 

Ориентация пар векторов

Если на плоскости задана система координат, то одну из двух ориентаций плоских фигур называют обычно положительной, а другую – отрицательной. За положительную принимается ориентация, определяемая обходом координатного треугольника ОЕ1Е2 (рис. 1) или, что то же самое, направлением вращения от вектора  к вектору  (на угол, меньший 1800). В связи с этим введём также понятие ориентации пары векторов: будем называть пару векторов  и   ориентированной положительно, если направление вращения (на наименьший возможный угол) от  к  совпадает с направлением вращения от  к ; в противном случае пару векторов  и  назовём ориентированной отрицательно.

 

 


Рис. 1

 

Выясним теперь, как определить ориентацию пары векторов  и , заданных своими комплексными координатами p и q соответственно. Очевидно, что если угол между векторами положительно ориентирован, то его синус положителен, в противном случае – отрицателен.

Используем формулу синуса угла между векторами, заданными своими комплексными координатами: . Найдём синус угла между векторами (p) и (q): . Здесь числитель – чисто мнимое число, следовательно, знак синуса угла зависит от знака числа .

Образом вектора (p) при аффинном преобразовании (2) будет вектор  с комплексной координатой , вектор , являющийся образом вектора (q) при этом же аффинном преобразовании будет иметь комплексную координату . Найдём теперь синус угла между векторами  и : . Упростив правую часть равенства, получим: . Знак синуса угла между векторами  и  зависит от знаков выражений  и  так как второе из них присутствует в выражении , то именно от выражения  зависит, будет ли знак синуса угла между векторами  и  отличаться от знак синуса угла между векторами  и . То есть если значение выражения  положительно, то ориентация пары векторов  и  будет совпадать с ориентацией пары векторов  и . В противном случае при аффинном преобразовании (2) ориентация пары векторов сменится на противоположную.

Таким образом, аффинное преобразование (2) сохраняет ориентацию пары векторов (и, соответственно, плоских фигур) в случае, когда его определитель  положителен. В этом случае преобразование (2) является аффинным преобразованием первого рода. Иначе, аффинное преобразование меняет ориентацию пары векторов (и, соответственно, плоских фигур) в случае, когда его определитель отрицателен. И в таком случае преобразование (2) является аффинным преобразованием второго рода.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...