Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Понятие преобразования родства

Родство – аффинное преобразование, имеющее прямую неподвижных точек. Его задаёт формула:

 , где , ,                       (20)                                                             

 

Осью этого преобразования является прямая , примем её за действительную ось Ох: [1]. Тогда очевидно, что с=0 и b =1- a. Поэтому преобразование (20) с действительной осью записывается формулой:

, где                                                          (21)

 

 

 


                                         

                                             Рис. 2

 

Выясним особенности этого преобразования. Перепишем его следующим образом                                                                         (22) составим из этого выражения и сопряжённого к нему выражения пропорцию . Откуда , а это является условием того, что векторы с координатами  и  перпендикулярны. Так как а-1 – постоянные вектор, а z и z ’ – координаты соответственных точек М и М’ при аффинном преобразовании (рис. 2), то все прямые, соединяющие точки М и М’ будут параллельны между собой и параллельны некоторому вектору с координатой (а-1) i, называемому направлением аффинного преобразования, в данном случае – родства.

Если (а-1) – чисто мнимое число (то есть  , откуда ), то направление родства будет коллинеарно оси родства. В этом случае аффинное преобразование называется сдвигом вдоль прямой и условия, которые его задают, имеют вид , ,                                                             (23)

Если же направление аффинного преобразования не совпадает с направлением его оси, то оно называется сжатием к прямой и его задают следующие условия: , ,                                          (24)

 

Сжатие и его частные виды

Найдём собственные числа λ преобразования сжатия (24) из условия . Составим систему из этого условия и сопряжённого к нему выражения: . Чтобы найти собственные числа, нужно решить уравнение , откуда получим  и .

Примем без доказательства следующую теорему [1]: если λ – собственное действительное число аффинного преобразования, то множество точек, каждая из которых делит в отношении отрезок, соединяющий точку с её прообразом, есть двойная прямая этого преобразования.

 

 


                                             Рис. 3

 

Очевидно, что прямые MM ’  и NN ’ (рис. 3) являются двойными прямыми и λ2 – действительное число, то точка Р делит отрезок MM ’ в отношении , то есть . Число = δ называется коэффициентом сжатия. Если а – действительное число, то направление сжатия перпендикулярно его оси и сжатие называется прямым (ортогональным) сжатием.

Рассмотрим частный случай сжатия – косую симметрию [1]. Это инволютивное преобразование, то есть оно тождественно преобразованию, обратному ему. Преобразование, обратное (24), имеет формулу:

                                                   (25)

Оно имеет ту же ось, что и (24). Равенство преобразований (24) и (25) имеет место тогда и только тогда, когда , откуда , то есть а – чисто мнимое число. Таким образом, формулой (24) при условии  задаётся косая симметрия с действительной осью. В этом случае коэффициент сжатия равен , следовательно, ось косой симметрии делит пополам каждый отрезок, соединяющий соответственные точки. Косая симметрия – аффинное преобразование второго рода, так как его определитель отрицателен.

Если а=0, получаем осевую симметрию относительно действительной оси. Осевая симметрия – аффинное преобразование также второго рода ().

 

Сдвиг

Выясним, как перемещается по плоскости точка при сдвиге (рис.4). Рассмотрим равенство (22), возьмём модули обеих частей этого равенства

                                                         (26)

и посмотрим, чем является каждый модуль в (26).

 

 

 

 

 


                                            Рис. 4

 

 - это расстояние от точки М(z) до её образа M ’(z ’) при аффинном преобразовании.  - это модуль постоянного вектора, перпендикулярного направлению сдвига, а  - это расстояние от М(z) до точки с координатой, сопряжённой z, равное удвоенному расстоянию от точки M (z) до действительной оси Ох.

Преобразуем правую часть (26):  ,                                   (27) тогда из (22) и (27) следует, что при сдвиге каждая точка M (z) смещается параллельно его оси на расстояние , пропорциональное расстоянию  от этой точки до действительной оси. Коэффициент пропорциональности этих расстояний  называется коэффициентом сдвига.

Найдём собственные числа преобразования сдвига из уравнения, составленного аналогично тому, как составляли для сжатия: , откуда найдём . Значит, преобразование сдвига имеет только один инвариантный пучок параллельных прямых, параллельных оси сдвига.

Определитель преобразования сдвига  строго больше нуля, поэтому сдвиг – аффинное преобразование первого рода.

Эллиптический поворот

Эллипс – это образ окружности при аффинном преобразовании. [1]

Рассмотрим  ортогональное  сжатие g  к действительной  оси.

 

Его задают условия:                                                                               (28)                                                                                        

а обратное к нему аффинное преобразование g-1 имеет формулу: , где , откуда в силу (28) обратное преобразование имеет вид:                                                                                        (29)

При ортогональном сжатии окружность перейдёт в эллипс (рис. 5). Коэффициент рассматриваемого сжатия равен , тогда .  и  называются большой и малой осями эллипса при . Найдём уравнение этого эллипса. Для этого в уравнении окружности заменим z на правую часть (29), получим: , тогда . Преобразовав данное равенство, получим: , откуда получаем уравнение эллипса .

Рассмотрим две произвольные точки окружности N и N 1. Точку N можно перевести в точку N 1 поворотом h на некоторый угол  вокруг точки О: , где , , .

 

                                                   Y

                                            P       N1

                                                                    N

                                                                    M                                             

                                            K          M1

 

 

                C                     O                           D                           X

 

                                            Т

                                            

 

                                            Q

                                            

                                             Рис. 5

 

Пусть точки М и М1 – образы точек соответственно N и N 1 при ортогональном сжатии g. Тогда точку М можем перевести в точку М1 следующим образом:

1)  (преобразование, обратное ортогональному сжатию);

2)  (поворот вокруг точки О на угол );

3)  (ортогональное сжатие).

Тогда , где . Найдём формулу преобразования f.

1. Сначала найдём формулу преобразования : .

2. Найдём формулу для преобразования f: , откуда получаем  - это формула эллиптического поворота.

Проверим, будет ли определитель рассматриваемого преобразования не равен нулю. Преобразуем выражение определителя

, используя равенство , тогда получим, что . Следовательно, определитель преобразования не равен нулю, и f является аффинным преобразованием, что и требовалось доказать.

Так как определитель рассматриваемого аффинного преобразования положителен, то эллиптический поворот – это аффинное преобразование первого рода.

Это преобразование имеет единственную неподвижную точку О, значит оно является центроаффинным. При этом преобразовании каждая точка М плоскости (МО) переходит в другую точку, которая принадлежит соответствующему эллипсу. Этот эллипс при рассмотренном преобразовании переходит сам в себя. Преобразование с объявленными свойствами называется эллиптическим поворотом.

Выясним, имеет ли эллиптический поворот инвариантные пучки параллельных прямых. Для этого найдём дискриминант характеристического уравнения этого преобразования. Комплексные координаты векторов  при аффинном преобразовании (2) переходят в коллинеарные им векторы  по формуле , откуда получаем уравнение . Решая его, получим характеристическое уравнение . Найдём (), его значение равно , тогда характеристическое уравнение запишется в виде: . Его дискриминант  отрицателен (так как ). Следовательно, f – аффинное преобразование с единственной неподвижной точкой О и не имеющее инвариантных пучков параллельных прямых, то есть эллиптический поворот – эквицентроаффинное преобразование.

Формулу (29) эллиптического поворота можно записать в виде системы условий:    Эту формулу можно представить иначе: , то есть эллиптический поворот является композицией сжатия к действительной оси  и подобия первого рода  с центром в точке О.

 

 §4. Параболический поворот

Покажем, что параболу можно перевести в себя при преобразовании её с помощью композиции сдвига и параллельного переноса, не параллельного оси сдвига. Пусть М – произвольная точка параболы П с осью l (рис. 6), примем эту ось за действительную. Произведём сдвиг с этой же осью l: , где ,  . Этот сдвиг переведёт точку М в точку М1 и параболу П – в параболу П1. Параболы П и П1 равны с точностью до сдвига.

 

 
П1

 

 


                     

                                                            Рис. 6

 

Теперь произведём параллельный перенос параболы П1: (), где . Тем самым, парабола П 1 перейдёт в параболу П, а точка М1 перейдёт в точку М’ параболы П.

Таким образом получили, что парабола переходит в себя при преобразовании её с помощью композиции сдвига и параллельного переноса, не параллельного оси сдвига [1,3]. Это преобразование называется параболическим поворотом и имеет формулу  , где , ,                               (30)                                  

Определитель найденного преобразования . Так как определитель отличен от нуля, параболический поворот является аффинным преобразованием, а так как он больше нуля, - аффинным преобразованием первого рода.

Найдём собственные числа параболического поворота аналогично тому, как делали это для других рассмотренных аффинных преобразований. Найдём собственные числа λ из условия . В процессе нахождения приходим к характеристическому уравнению , но так как , характеристическое уравнение примет вид , откуда . Следовательно параболический поворот имеет только один инвариантный пучок параллельных прямых, параллельных оси сдвига.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...