Понятие преобразования родства
Родство – аффинное преобразование, имеющее прямую неподвижных точек. Его задаёт формула: , где , , (20)
Осью этого преобразования является прямая , примем её за действительную ось Ох: [1]. Тогда очевидно, что с=0 и b =1- a. Поэтому преобразование (20) с действительной осью записывается формулой: , где (21)
Рис. 2
Выясним особенности этого преобразования. Перепишем его следующим образом (22) составим из этого выражения и сопряжённого к нему выражения пропорцию . Откуда , а это является условием того, что векторы с координатами и перпендикулярны. Так как а-1 – постоянные вектор, а z и z ’ – координаты соответственных точек М и М’ при аффинном преобразовании (рис. 2), то все прямые, соединяющие точки М и М’ будут параллельны между собой и параллельны некоторому вектору с координатой (а-1) i, называемому направлением аффинного преобразования, в данном случае – родства. Если (а-1) – чисто мнимое число (то есть , откуда ), то направление родства будет коллинеарно оси родства. В этом случае аффинное преобразование называется сдвигом вдоль прямой и условия, которые его задают, имеют вид , , (23) Если же направление аффинного преобразования не совпадает с направлением его оси, то оно называется сжатием к прямой и его задают следующие условия: , , (24)
Сжатие и его частные виды Найдём собственные числа λ преобразования сжатия (24) из условия . Составим систему из этого условия и сопряжённого к нему выражения: . Чтобы найти собственные числа, нужно решить уравнение , откуда получим и . Примем без доказательства следующую теорему [1]: если λ – собственное действительное число аффинного преобразования, то множество точек, каждая из которых делит в отношении отрезок, соединяющий точку с её прообразом, есть двойная прямая этого преобразования.
Рис. 3
Очевидно, что прямые MM ’ и NN ’ (рис. 3) являются двойными прямыми и λ2 – действительное число, то точка Р делит отрезок MM ’ в отношении , то есть . Число = δ называется коэффициентом сжатия. Если а – действительное число, то направление сжатия перпендикулярно его оси и сжатие называется прямым (ортогональным) сжатием. Рассмотрим частный случай сжатия – косую симметрию [1]. Это инволютивное преобразование, то есть оно тождественно преобразованию, обратному ему. Преобразование, обратное (24), имеет формулу: (25) Оно имеет ту же ось, что и (24). Равенство преобразований (24) и (25) имеет место тогда и только тогда, когда , откуда , то есть а – чисто мнимое число. Таким образом, формулой (24) при условии задаётся косая симметрия с действительной осью. В этом случае коэффициент сжатия равен , следовательно, ось косой симметрии делит пополам каждый отрезок, соединяющий соответственные точки. Косая симметрия – аффинное преобразование второго рода, так как его определитель отрицателен. Если а=0, получаем осевую симметрию относительно действительной оси. Осевая симметрия – аффинное преобразование также второго рода ().
Сдвиг
Выясним, как перемещается по плоскости точка при сдвиге (рис.4). Рассмотрим равенство (22), возьмём модули обеих частей этого равенства (26) и посмотрим, чем является каждый модуль в (26).
Рис. 4
- это расстояние от точки М(z) до её образа M ’(z ’) при аффинном преобразовании. - это модуль постоянного вектора, перпендикулярного направлению сдвига, а - это расстояние от М(z) до точки с координатой, сопряжённой z, равное удвоенному расстоянию от точки M (z) до действительной оси Ох. Преобразуем правую часть (26): , (27) тогда из (22) и (27) следует, что при сдвиге каждая точка M (z) смещается параллельно его оси на расстояние , пропорциональное расстоянию от этой точки до действительной оси. Коэффициент пропорциональности этих расстояний называется коэффициентом сдвига. Найдём собственные числа преобразования сдвига из уравнения, составленного аналогично тому, как составляли для сжатия: , откуда найдём . Значит, преобразование сдвига имеет только один инвариантный пучок параллельных прямых, параллельных оси сдвига. Определитель преобразования сдвига строго больше нуля, поэтому сдвиг – аффинное преобразование первого рода. Эллиптический поворот Эллипс – это образ окружности при аффинном преобразовании. [1] Рассмотрим ортогональное сжатие g к действительной оси.
Его задают условия: (28) а обратное к нему аффинное преобразование g-1 имеет формулу: , где , откуда в силу (28) обратное преобразование имеет вид: (29) При ортогональном сжатии окружность перейдёт в эллипс (рис. 5). Коэффициент рассматриваемого сжатия равен , тогда . и называются большой и малой осями эллипса при . Найдём уравнение этого эллипса. Для этого в уравнении окружности заменим z на правую часть (29), получим: , тогда . Преобразовав данное равенство, получим: , откуда получаем уравнение эллипса .
Рассмотрим две произвольные точки окружности N и N 1. Точку N можно перевести в точку N 1 поворотом h на некоторый угол вокруг точки О: , где , , .
Y P N1 N M K M1
C O D X
Т
Q
Рис. 5
Пусть точки М и М1 – образы точек соответственно N и N 1 при ортогональном сжатии g. Тогда точку М можем перевести в точку М1 следующим образом: 1) (преобразование, обратное ортогональному сжатию); 2) (поворот вокруг точки О на угол ); 3) (ортогональное сжатие). Тогда , где . Найдём формулу преобразования f. 1. Сначала найдём формулу преобразования : . 2. Найдём формулу для преобразования f: , откуда получаем - это формула эллиптического поворота. Проверим, будет ли определитель рассматриваемого преобразования не равен нулю. Преобразуем выражение определителя , используя равенство , тогда получим, что . Следовательно, определитель преобразования не равен нулю, и f является аффинным преобразованием, что и требовалось доказать. Так как определитель рассматриваемого аффинного преобразования положителен, то эллиптический поворот – это аффинное преобразование первого рода. Это преобразование имеет единственную неподвижную точку О, значит оно является центроаффинным. При этом преобразовании каждая точка М плоскости (М ≠ О) переходит в другую точку, которая принадлежит соответствующему эллипсу. Этот эллипс при рассмотренном преобразовании переходит сам в себя. Преобразование с объявленными свойствами называется эллиптическим поворотом.
Выясним, имеет ли эллиптический поворот инвариантные пучки параллельных прямых. Для этого найдём дискриминант характеристического уравнения этого преобразования. Комплексные координаты векторов при аффинном преобразовании (2) переходят в коллинеарные им векторы по формуле , откуда получаем уравнение . Решая его, получим характеристическое уравнение . Найдём (), его значение равно , тогда характеристическое уравнение запишется в виде: . Его дискриминант отрицателен (так как ). Следовательно, f – аффинное преобразование с единственной неподвижной точкой О и не имеющее инвариантных пучков параллельных прямых, то есть эллиптический поворот – эквицентроаффинное преобразование. Формулу (29) эллиптического поворота можно записать в виде системы условий: Эту формулу можно представить иначе: , то есть эллиптический поворот является композицией сжатия к действительной оси и подобия первого рода с центром в точке О.
§4. Параболический поворот Покажем, что параболу можно перевести в себя при преобразовании её с помощью композиции сдвига и параллельного переноса, не параллельного оси сдвига. Пусть М – произвольная точка параболы П с осью l (рис. 6), примем эту ось за действительную. Произведём сдвиг с этой же осью l: , где , . Этот сдвиг переведёт точку М в точку М1 и параболу П – в параболу П1. Параболы П и П1 равны с точностью до сдвига.
Рис. 6
Теперь произведём параллельный перенос параболы П1: (), где . Тем самым, парабола П 1 перейдёт в параболу П, а точка М1 перейдёт в точку М’ параболы П. Таким образом получили, что парабола переходит в себя при преобразовании её с помощью композиции сдвига и параллельного переноса, не параллельного оси сдвига [1,3]. Это преобразование называется параболическим поворотом и имеет формулу , где , , (30) Определитель найденного преобразования . Так как определитель отличен от нуля, параболический поворот является аффинным преобразованием, а так как он больше нуля, - аффинным преобразованием первого рода. Найдём собственные числа параболического поворота аналогично тому, как делали это для других рассмотренных аффинных преобразований. Найдём собственные числа λ из условия . В процессе нахождения приходим к характеристическому уравнению , но так как , характеристическое уравнение примет вид , откуда . Следовательно параболический поворот имеет только один инвариантный пучок параллельных прямых, параллельных оси сдвига.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|