Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Тип шкалы однозначно определяет совокупность статистических методов, кото­рые могут быть применены для обработки данных измерения.




Тип шкалы однозначно определяет совокупность статистических методов, кото­рые могут быть применены для обработки данных измерения.

Шкала (лат. scala — лестница) в буквальном значении есть измерительный ин­струмент.

П. Суппес и Дж. Зинес [Суппес П., Зинес Дж., 967] дали классическое опреде­ление шкалы: «Пусть A — эмпирическая система с отношениями (ЭСО), R — пол­ная числовая система с отношениями (ЧСО), f — функция, которая гомоморфно ото­бражает А в подсистему R (если в области нет двух разных объектов с одинаковой мерой, что является отображением изоморфизма). Назовем шкалой упорядоченную тройку < А; R; f> ».

 

Обычно в качестве числовой системы R выбирается система действительных чи­сел или ее подсистема. Множество А — это совокупность измеряемых объектов с системой отношений, определенной на этом множестве. Отображение f — правило приписывания каждому объекту определенного числа.

В настоящее время определение Суппеса и Зинеса уточнено. Во-первых, в опре­деление шкалы вводится G — группа допустимых преобразований. Во-вторых, мно­жество А понимается не только как числовая система, но и как любая формальная знаковая система, которая может быть поставлена в отношение гомоморфизма с эм­пирической системой. Таким образом, шкала — это четверка < А; R; f; G>. Согласно современным представлениям, внутренней характеристикой шкалы выступает именно группа G, а f является лишь привязкой шкалы к конкретной ситуации изме­рения.

В настоящее время под измерением понимается конструирование любой функ­ции, которая изоморфно отображает эмпирическую структуру в символическую структуру. Как уже отмечено выше, совсем не обязательно такой структурой долж­на быть числовая. Это может быть любая структура, с помощью которой можно измерить характеристики объектов, заменив их другими, более удобными в обраще­нии (в том числе числами).

Подробнее математические основания теории психологических измерений из­ложены в монографии А. Д. Логвиненко «Измерения в психологии: математические основы» (1993).

Существуют следующие основные типы шкал: наименований, порядка, интерва­лов, отношений. Ряд специалистов выделяет также абсолютную шкалу и шкалу раз­ностей.

Шкала наименований

Шкала наименований получается путем присвоения «имен» объек­там. При этом нужно разделить множество объектов на непересекающиеся подмно­жества.

Иными словами, объекты сравниваются друг с другом и определяется их эквива­лентность—неэквивалентность. В результате данной процедуры образуется сово­купность классов эквивалентности. Объекты, принадлежащие к одному классу, эк­вивалентны друг другу и отличны от объектов, относящихся к другим классам. Эк­вивалентным объектам присваиваются одинаковые имена.

Операция сравнения является первичной для построения любой шкалы. Для по­строения такой шкалы нужно, чтобы объект был равен или подобен сам себе (х = х для всех значений х), т. е. на множестве объектов должно быть реализовано отно­шение рефлексивности. Для психологических объектов, например испытуемых или психических образов, это отношение реализуемо, если абстрагироваться от време­ни. Но поскольку операции попарного (в частности) сравнения множества всех объектов эмпирически реализуются неодновременно, то в ходе эмпирического из­мерения даже это простейшее условие не выполняется.

Следует запомнить: любая шкала есть идеализация, модель реальности, даже та­кая простейшая, как шкала наименований.

На объектах должно быть реализовано отношение симметрии R (X = Y) ®R (Y = X) и транзитивности R (X = Y, Y = Z) ® R (X = Z). Но на множестве ре­зультатов психологических экспериментов эти условия могут нарушаться.

Кроме того, многократное повторение эксперимента (накопление статистики) приводит к «перемешиванию» состава классов: в лучшем случае мы можем полу­чить оценку, указывающую на вероятность принадлежности объекта к классу.

Таким образом, нет оснований говорить о шкале наименований (номинативной шкале, или шкале строгой классификации) как о простейшей шкале, начальном уровне измерения в психологии.

О шкале наименований можно говорить в том случае, когда эмпирические объек­ты просто «помечаются» числом. Примером таких пометок являются номера на май­ках футболистов: цифру «1» по традиции получает вратарь, и это указывает на то, что по своей функции он отличен от всех остальных игроков; но его функция на фут­больном поле эквивалентна функции других вратарей, если не учитывать качество игры.

В принципе, вместо чисел при использовании шкалы наименований необходимо применять другие символы, ибо числовая шкала (натуральный ряд чисел) характе­ризуется разными системами операций.

Итак, если объекты в каком-то отношении эквивалентны, то мы имеем право от­нести их к одному классу. Главное, не приписывать один и тот же символ разным классам или разные символы одному и тому же классу. Для этой шкалы допустимо любое взаимно однозначное преобразование.

Несмотря на тенденцию «завышать» мощность шкалы, психологи очень часто применяют шкалу наименований в исследованиях. «Объективные» измерительные процедуры при диагностике личности приводят к типологизации: отнесению кон­кретной личности к тому или иному типа. Примером такой типологии являются классические темпераменты: холерик, сангвиник, меланхолик и флегматик.

Исследователь, пользующийся шкалой наименований, может применять следу­ющие инвариантные статистики: относительные частоты, моду, корреляции случай­ных событий, критерий c2.

Шкала порядка

Порядковая шкала образуется, если на множестве реализовано одно бинарное отношение — порядок (отношения «не больше» и «меньше»). Построение шкалы порядка — процедура более сложная, чем создание шкалы наименований.

На шкале порядка объект может находиться между двумя другими, причем если а> b, b> с, то а> с (правило транзитивности отношений).

Классы эквивалентности, выделенные при помощи шкалы наименований, могут быть упорядочены по некоторому основанию. Различают шкалу строгого порядка (строгая упорядоченность) и шкалу слабого порядка (слабая упорядоченность). В первом случае на элементах множества реализуются отношения «не больше» и «меньше», а во втором — «не больше или равно» и «меньше или равно».

Шкала порядка сохраняет свои свойства при изотонических преобразованиях. Все функции, которые не имеют максимума (монотонные), отвечают этой группе преобразований. Значения величин можно нор­мализовать. Еще Стивенс высказывал мнение, что результаты большинства психологических змерений в лучшем случае соответствуют лишь шкалам порядка.

Шкалы порядка широко используются в психологии познавательных процессов, экспериментальной психосемантике, социальной психологии: ранжирование, оце­нивание, в том числе педагогическое, дают порядковые шкалы. Классическим примером использования порядковых шкал является тестирование личностных черт, а также способностей. Большинство же специалистов в области тестирования интел­лекта полагают, что процедура измерения этого свойства позволяет использовать интервальную шкалу и даже шкалу отношений.

 

Как бы то ни было, шкала порядка позволяет ввести линейную упорядоченность объектов на некоторой оси признака. Тем самым вводится важнейшее понятие — измеряемое свойство, или линейное свойство, тогда как шкала наименований ис­пользует «вырожденный» вариант интерпретации понятия «свойство»: «точечное» свойство (свойство есть — свойства нет).

Переходным вариантом шкалы порядка можно считать дихотомическую класси­фикацию, проводимую по принципу «есть свойство — нет свойства» (1; 0) при 1 > 0. Дихотомическое разбиение множества позволяет применять не только порядок, но и метрику. Для интерпретации данных, полученных посредством порядковой шка­лы, можно использовать более широкий спектр статистических мер (в дополнение к тем, которые допустимы для шкалы наименований).

В качестве характеристики центральной тенденции можно использовать медиа­ну, а в качестве характеристики разброса — процентили. Для установления связи двух измерений допустима порядковая корреляция (t-Кэнделла и r-Спирмена).

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...