Тест валиден (и надежен), если на его результаты влияет лишь измеряемое свойство.
Психологический тест включает в себя некоторую совокупность заданий, инструкции: испытуемому — правило работы с тестом, экспериментатору — правило организации работы испытуемого с тестом и правило работы с данными, а также теоретическое описание с указанием свойств, измеряемых тестом, шкал (топологии свойства) и метода введения шкальной оценки. Указываются также психометрические параметры теста. С теоретической точки зрения, для измерения свойства и интерпретации тестового балла следует описать типичную структуру и процедуры тестирования с позиций взаимодействия испытуемого и экспериментатора. Испытуемый, обладающий свойством (Рi), должен выполнить (F1) задания теста ( Тем самым существуют два типа процедур: собственно тестирование — взаимодействие испытуемого с тестом, и интерпретация — «взаимодействие» данных испытуемого с «моделью совокупности испытуемых». Получаем два отображения — F: Р —> J и F: J —> Р. Идеальная обобщенная модель теста, возникающая из процедуры тестирования, тем самым должна включать в себя: 1) описание вида отображения F1 и F2 (они должны быть тождественными); 2) описание топологии свойства; 3) характеристику индикаторов (ответов испытуемого) Индикаторы являются поведенческими признаками и так же, как свойства, могут быть: 1) не определены; 2) дискретны; 3) линейны; 4) многомерны. В обычном случае мы имеем дискретные индикаторы: отдельные поведенческие акты. Искусственным методом (суммируя индикаторы) мы образуем при интерпретации псевдолинейное свойство, получая «сырой» балл. Возникает проблема: в каких случаях можно это делать? Кроме того, существуют некоторые отношения на множествах испытуемых и индикаторов.
Если свойство не определено, то единственное отношение, которое можно установить на множестве испытуемых, — это отношение сходства. Если свойство является точечным, то на множестве испытуемых можно ввести отношения эквивалентности (обладает свойством), неэквивалентности (не обладает свойством) и применить дихотомическую классификацию. Наконец, если свойство линейное или многомерное, то испытуемых можно шкалировать по их положению на линейном континууме или в пространстве. Поступаем так и в отношении индикаторов. Они могут быть эквивалентны или не эквивалентны, определены или не определены, шкалированы или не шкалированы. Следовательно, в зависимости от вида отношений, которые мы вводим на множестве испытуемых (определяется природой свойства) или индикаторов (определяется описанием поведения и заданий), получаем разные модели теста. Кроме того, необходимо учесть вид отображений — F1 и F2, которые представляют собой решающие правила соотнесения индикаторов со свойством. Они зависят от интерпретации процедуры тестирования. Ниже мы рассмотрим некоторые возможные модели. Итак, возможны следующие модели теста, основанные на различной топологии измеряемого свойства. 1. Если свойство не определено, то необходимо рассматривать отношение различия на множестве людей. Это отношение порождает новый класс объектов. Отсюда — тест выявляет меру сходства каждого человека с «человеком-эталоном». 2. Если свойство качественно определено, то оно рассматривается как точечное, что позволяет ограничить класс объектов — выделить людей, обладающих свойством, и людей, им не обладающих.
Тест позволяет в этом случае произвести дихотомическую классификацию. 3. Если свойство линейное или многомерное, то можно выявить величину свойства, характеризующую каждого человека. Тест позволяет измерить свойство количественно. Существует множество конкретных тестовых методик, которые можно классифицировать по самым разным основаниям. В настоящее время психологический тест рассматривается как набор заданий, т. е. измерительный инструмент, обнаруживающий свойство. Общее название для заданий — пункты теста. Испытуемому предлагаются варианты ответа по отношению к каждой задаче. Ответ регистрируется и считается индикатором (признаком), обнаруживающим свойство. Варианты ответа могут быть разными, но чаще используются такие: «да» — «нет», «решил» — «не решил» и др. Каждый индикатор, сочетание пунктов — ответ, соотносится с ключом, который приписывает индикатор определенному свойству. В основе подобной процедуры лежит модель, предложенная еще К. Левиным [Lewin К., 1936], — поведение есть функция личности и ситуации: В= f (Р, S). Решается иная задача: восстановить свойство личности по поведению в ситуации: ситуацией является пункт теста, а поведением — ответ испытуемого: Р = f (В, S). Таким образом, каждый индикатор свойства есть соединение поведения и ситуации: Многомерный тест измеряет не одно, а несколько свойств личности, поэтому в общем случае имеется матрица вида J х Р, где каждый индикатор соотносится со свойством. Процедура обнаружения свойств, к которой сводится тестовое измерение, завершается выводом суммарного балла. Такое отношение между индикаторами и тестом называется кумулятивно-аддитивной моделью. «Сырой» балл считается оценкой, характеризующей испытуемого. Наиболее часто эту оценку считают оценкой «интенсивности» свойства. Тем самым явно или неявно принимается гипотеза о том, что относительная частота обнаружения свойства прямо пропорциональна «интенсивности» свойства: у = k (т/ п) + С, где т/п — отношение числа обнаруженных признаков к общему числу испытаний, у — «интенсивность» свойства, а k и С — некоторые константы. Очевидно, что неявным образом для измерения психологических особенностей индивидов применяется интервальная шкала.
Гипотезу о наличии подобной связи называют также гипотезой эквивалентности интенсивности и экстенсивности проявления свойства. Кумулятивную гипотезу проверяют путем корреляции результатов применения различных методик. В частности, при измерении мотивации в качестве базовой методики используется предложенный Г. Мюрреем Тест тематической апперцепции (ТАТ). Он состоит из нескольких картинок с изображением людей в определенных ситуациях. Испытуемому предлагается составить рассказ по поводу каждой ситуации. Его высказывания анализируются. По известным ключевым признакам выявляется связь высказываний с определенной мотивацией. Число высказываний, относящихся к тому или иному мотиву, характеризует величину его интенсивности. Кумулятивная гипотеза является в этом случае переводом на математический язык известной поговорки: «У кого что болит, тот о том и говорит». Считается, что количество «речевых продуктов» пропорционально силе мотива. Число признаков психологического свойства при этом не фиксировано, а может быть только соотнесено со средним значением по выборке. Опросники, разработанные для диагностики мотивации, сопоставляются с методикой ТАТ. При наличии высокого положительного коэффициента линейной корреляции результатов кумулятивно-аддитивная модель принимается и для обработки данных личного опросника. Критическую оценку применения кумулятивно-аддитивной модели дал Р. Мейли [Мейли Р., 1975]. Он полагал, что и методика типа ТАТ, и опросники (особенно — на самооценку) измеряют только вероятность наличия у испытуемого того или иного психологического свойства, а не его интенсивность. Критика, с которой выступает Мейли, носит только качественный характер и не имеет математического или эмпирического обоснования. Процедура суммирования баллов сама по себе не плоха и не хороша: важно выявить природу итоговой оценки. Суммарный балл может характеризовать близость испытуемого к некоторому типу, а с помощью оценки определяется его место на шкале порядка или интервалов. Вид интерпретации тестового балла зависит от принятой разработчиком модели.
Традиционные обобщенные измерительные модели теста являются математическими, описывающими взаимодействие измерительного инструмента (теста) и объекта измерения (человека). Основная особенность этих моделей: они применялись для обоснования метода обработки данных тестирования в целях выявления латентного свойства. В отношении психологического свойства можно сделать следующие теоретические предположения. Первое, наиболее простое, заключается в том, что нам неизвестно, есть свойство или нет. Утверждение кажется парадоксальным, однако дело в том, что психическое свойство — некоторое теоретическое допущение, и если у нас нет достаточных оснований пользоваться этим понятием для объяснения поведения, лучше к нему не прибегать. Второй вариант допущения состоит в том, что свойство есть, но нам неизвестна его топология: неясно, является ли это свойство точечным, линейным, многомерным и т. д. Третье возможное утверждение: нам известна топология свойства. Свойство — одномерный континуум (непрерывный) и может быть измерено некоторой порядковой или метрической шкалой (шкала наименований не является шкалой в строгом смысле этого слова). По отношению к взаимодействию испытуемого и теста возможны два допущения: 1) появление признака строго детерминировано и соответственно детерминирован тип ответа; 2) взаимодействие испытуемого и задания определяет вероятность получения того или иного ответа. Чаще применяется вероятностная модель (рис. 6. 4).
Множество свойств имеет определенную структуру. Традиционно полагается, что тестируемые свойства должны быть линейно независимы, хотя в общем случае это условие необязательно. Каждое свойство имеет определенную топологию: она может быть не определена, а свойство — точечно, линейно, многомерно. 1. Тест измеряет свойства некоторых объектов, принадлежащих определенному множеству
2. Тест включает в себя множество заданий ( Отношения на множестве индикаторов независимы от отношений на множестве испытуемых, т. е. от топологии свойства. Это правило соответствует принципу объективности метода измерения: свойства прибора (в нашем случае — тестовых заданий) не зависят от свойств объекта. 3. Между множествами испытуемых ( Интерпретация заключается в том, что на основе этих признаков экспериментатор при работе с «ключом» теста выявляет свойства испытуемого и относит его к определенной категории (подмножеству множества испытуемых). Отношения измерения: 1. Отображение множества свойств на множество испытуемых вида F1: Каждое свойство характеризуется вектором вида < Обычно Pij характеризует распределение испытуемых, на которых апробировали тест, по отношению к пространству свойств. 2. Отображение F2: 3. Отображение F3: время решения задания, шкальная оценка и т. д. Этот вектор характеризует ответы испытуемого на тест и подвергается процедуре интерпретации. Отношения интерпретации: 1. Отображение множества 2. Отображение множества 3. Отображение множества Описания множеств Поскольку тест направлен на измерение психического свойства (в частности, способности), то вид конкретной модели, описывающей тест, определяется топологией свойства. Рассмотрим варианты нормативной обобщенной модели теста для одномерного случая, когда измеряется только одно свойство. 1. Свойство не определено. Если топология свойства не определена, то это означает, что множество испытуемых нельзя (в соответствии с определением понятия «свойство») разбить на подмножества, обладающие или не обладающие свойством. Иначе: на множестве испытуемых нельзя ввести отношения эквивалентности—неэквивалентности. Однако на множестве испытуемых можно ввести отношения толерантности (сходства). Это отношение рефлексивно, симметрично, но не транзитивно. Множество индикаторов Единственно возможный способ интерпретации таких результатов — выделение из множества испытуемых «эталонного испытуемого» (например, решившего все задачи теста). После этого производится подсчет коэффициентов сходства всех испытуемых с «эталоном». Назовем этот вариант модели «моделью сходств». В психологических исследованиях она применяется редко. Очевидно, свою роль играет стремление исследователей максимально повысить мощность интерпретации данных. 2. Свойство качественно определено. Топология свойства определена: оно является точечным. На множества испытуемых можно ввести отношение эквивалентности—неэквивалентности (рефлексивное, симметричное, транзитивное), указывающее на наличие или отсутствие у них свойства. Следовательно, отображение F1: Назовем эту модель моделью дихотомической классификации. Она использована в опросниках Личко, опросниках УНП и ряде других. 3. Свойство качественно и количественно определено. Свойство является линейным континуумом, следователь, на нем определена метрика. Отображение F1': В этом случае для подсчета величины, характеризующей принадлежность испытуемого к определенной интенсивности свойства, применяют кумулятивно-аддитивную модель: число признаков, проявленных при выполнении заданий теста (с учетом «весов»), прямо пропорционально интенсивности свойства, которым обладает испытуемый. Эта модель есть отображение F2': Индикаторы свойства также могут быть однородными и разнородными. В последнем случае они шкалируются или не шкалируются. Если индикаторы однородны, то они выявляют свойство или уровень его интенсивности с равной вероятностью. Если индикаторы разнородны, то они выявляют свойство или уровень его интенсивности с разной вероятностью. На множестве индикаторов может быть введена некоторая мера — «сила» признака: чем сильнее признак, тем с большей вероятностью он выявляет свойство или определенный уровень его интенсивности. В этом случае для описания теста мы получаем так называемую модель Раша. Классическая теория теста лежит в основе современной дифференциальной психометрики. Описание оснований этой теории содержится во многих учебниках, пособиях, практических руководствах, научных монографиях. Конструирование тестов для изменения психологических свойств и состояний основано на шкале интервалов. Измеряемое психическое свойство считается линейным и одномерным. Предполагается также, что распределение совокупности людей, обладающих данным свойством, описывается кривой нормального распределения. В основе тестирования лежит классическая теория погрешности измерений; она полностью заимствована из физики. Считается, что тест — такой же измерительный прибор, как вольтметр, термометр или барометр, и результаты, которые он показывает, зависят от величины свойства у испытуемого, а также от самой процедуры измерения («качества» прибора, действий экспериментатора, внешних помех и т. д. ). Любое свойство личности имеет «истинный» показатель, а показания по тесту отклоняются от истинного на величину случайной погрешности. На показания теста влияет и «систематическая» погрешность, но она сводится к прибавлению (вычитанию) константы к «истинной» величине параметра, что для интервальной шкалы значения не имеет. Если тест проводить много раз, то среднее будет характеристикой «истинной» величины параметра. Отсюда выводится понятие ретестовой надежности: чем теснее коррелируют результаты начального и повторного проведения теста, тем он надежнее. Стандартная погрешность измерения:
Предполагается, что существует множество заданий, которые могут репрезентировать измеряемое свойство. Тест есть лишь выборка заданий из их генеральной совокупности. В идеале можно создать сколько угодно эквивалентных форм теста. Отсюда — определение надежности теста методами параллельных форм и расщепление его на эквивалентные равные части. Задания теста должны измерять «истинное» значение свойства. Все задания одинаково скоррелированы друг с другом. Корреляция задания с истинным показателем:
Поскольку в реальном монометрическом тесте число заданий ограничено (не более 100), то оценка надежности теста всегда приблизительна. Так, определяемая надежность теста связана с однородностью, которая выражается в корреляциях между заданиями. Надежность возрастает с увеличением одномерности теста и числа его заданий, причем довольно быстро. Стандартная надежность 0, 02 соответствует тесту длиной в 10 заданий, а при 30 заданиях она равна 0, 007. Оценка стандартной надежности:
Для оценок надежности используется ряд показателей. Наиболее известна формула Кронбаха:
Для определения надежности методом расщепления используется формула Спирмена—Брауна. В принципе классическая теория теста касается лишь проблемы надежности. Вся она базируется на том, что результаты выполнения разных заданий можно суммировать с учетом весовых коэффициентов. Так получается «сырой» балл Y=å axi+c, где xi — результат выполнения i-го задания, а — весовой коэффициент ответа, с — произвольная константа. По поводу того, откуда возникают «ответы», в классической теории не говорится ни слова. Несмотря на то, что проблеме валидности в классической теории теста уделяется много внимания, теоретически она никак не решается. Приоритет отдан надежности, что и выражено в правиле: валидность теста не может быть больше его надежности. Валидность означает пригодность теста измерять то свойство, для измерения которого он предназначен. Следовательно, чем больше на результат выполнения теста или отдельного задания влияет измеряемое свойство и чем меньше — другие переменные (в том числе внешние), тем тест валидней и, добавим, надежнее, поскольку влияние помех на деятельность испытуемого, измеряемую валидным тестом, минимально. Но это противоречит классической теории теста, которая основана не на дея-тельностном подходе к измерению психических свойств, а на бихевиористской парадигме: стимул—ответ. Если же рассматривать тестирование как активное порождение испытуемым ответов на задания, то надежность теста будет функцией, производной от валидности. Тест валиден (и надежен), если на его результаты влияет лишь измеряемое свойство. Тест невалиден (и ненадежен), если результаты тестирования определяются влиянием нерелевантных переменных.
Интерпретация результатов исследования, требования к интерпретации и представлению результатов исследования. Результаты исследования, их интерпретация и обобщение Данные исследования обработаны и представлены в той или иной форме. Применение статистических критериев уже позволило сделать вывод о принятии или отвержении статистической гипотезы H1 или Н0. Предположим, что статистическая гипотеза о различии результатов экспериментальной и контрольной групп принята. Какие выводы мы можем сделать после обработки экспериментальных результатов? Итог любого исследования — преобразование «сырых» данных в решение об обнаружении явления (различий в поведении двух и более групп), о статистической связи или причинной зависимости. Подтверждение или опровержение статистической гипотезы о значимости обнаруженных сходств — различий, связей и должно быть интерпретировано как подтверждение (неопровержение) или опровержение экспериментальной гипотезы. Как правило, исследователь пытается подтвердить гипотезы о различиях поведения контрольной и экспериментальной групп. Нуль-гипотеза — гипотеза о тождестве групп. При статистическом выводе возможны различные варианты решений. Исследователь может принять или отвергнуть статистическую нуль-гипотезу, но она может быть объективно («на самом деле») верной или ложной. Соответственно возможны четыре исхода: 1) принятие верной нуль-гипотезы; 2) отвержение ложной нуль-гипотезы; 3) принятие ложной нуль-гипотезы; 4) отвержение верной нуль-гипотезы.
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|