Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Идентификация эконометрических уравнений.




При переходе от приведенной формы модели к структурной исследователь сталкивается с проблемой идентификации. Идентификация – единственность соответствия между структурной и приведенной формами модели.

Параметры структурной формы модели по оценкам приведенных коэффициентов можно определить не всегда. Для этого необходимо, чтобы модель была идентифицируемой.

С позиции идентифицируемости структурные модели можно подразделить на три вида:

Выделяют:

1) Точно идентифицируемая модель – все ее уравнения точно идентифицированы. То есть все структурные коэффициенты определяются однозначно (единственным способом) по коэффициентам приведенной формы модели. И число параметров структурной модели равно числу параметров приведенной формы.

2) Неидентифицируемая модель – число приведенных коэффициентов меньше числа структурных коэффициентов. Оценки всех структурных параметров невозможно найти по коэффициентам приведенной модели.

3) Сверхидентифицируемая модель – число приведенных коэффициентов больше числа структурных коэффициентов (на основе приведенной формы можно получить 2 и более значений одного структурного коэффициента). Практически решаема, но требует применения специальных методов.

На идентификацию проверяются все уравнения модели. Модель считается идентифицируемой, если все уравнения идентифицируемы; сверх – если хоть одно сверхидентифицируемо, а остальные точно идентифицируемы. Если среди всех уравнений модели есть хотя бы одно неидентифицированное, то вся модель считается неиденти­фицированной.

Правила идентификации

Введем следующие обозначения:

М- число экзогенных (предопределенных) переменных в модели;

т- число экзогенных (предопределенных) переменных в данном уравнении;

К - число эндогенных переменных в модели;

k - число эндогенных переменных в данном уравнении.

А) Необходимое (но недостаточное) условие идентификации.

Для того чтобы уравнение модели было идентифици­руемо, необходимо, чтобы число предопределенных пере­менных, отсутствующих в данном уравнении, было не меньше «числа эндогенных переменных, входящих в уравнение минус 1», т.е.: ;

Если , уравнение точно идентифицировано.

Если , уравнение сверхидентифицировано.

Либо D+1=H (H – число эндогенных переменных в уравнении; D – число отсутствующих экзогенных переменных).

Эти правила следует применять к структурной форме модели.

Достаточное условие идентификации. Введем обозначения: А - матрица коэффициентов при переменных не входящих в данное уравнение.

Достаточное условие идентификации заключается в том, что

- определитель матрицы А должен быть не равен нулю,

- ранг матрицы А должен быть не меньше, чем число эндогенных переменных в системе без одного .

Ранг матрицы - размер наибольшей ее квадратной подматрицы, определитель которой не равен нулю. Пример:

a b

c d тогда ранг R=2.

Сформулируем необходимое и достаточное условия идентификации:

1) Если и ранг матрицы А равен , то уравнение сверхидентифицировано.

2) Если и ранг матрицы А , то уравнение точно идентифицировано.

3) Если и ранг матрицы А < то уравнение неидентифицированно.

4) Если , то уравнение неидентифицированно. В этом случае ранг матрицы А будет меньше .

Оценка точно идентифицированного уравнения осу­ществляется с помощью косвенного метода наименьших квадратов (КМНК).

Алгоритм КМНК включает 3 шага:

1) составление приведенной формы модели и выраже­ние каждого коэффициента приведенной формы через структурные параметры;

2) применение обычного МНК к каждому уравнению приведенной формы и получение численных оценок приве­денных параметров;

3) определение оценок параметров структурной фор­мы по оценкам приведенных коэффициентов, используя со­отношения, найденные на шаге 1.

Оценка сверхидентифицированного уравнения осуще­ствляется при помощи двухшагового метода наименьших квадратов.

Алгоритм двухшагового МНК включает следующие шаги:

1) составление приведенной формы модели;

2) применение обычного МНК к каждому уравнению приведенной формы и получение численных оценок приве­денных параметров;

3) определение расчетных значений эндогенных пере­менных, которые фигурируют в качестве факторов в струк­турной форме модели;

4) определение структурных параметров каждого уравнения в отдельности обычным МНК, используя в каче­стве факторов входящие в это уравнение предопределенные переменные и расчетные значения эндогенных переменных, полученные на шаге 1.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...