Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Гранулоциты 1 страница




Плазмолемма. Плазмолемма отличается от внутриклеточных мембран большей толщиной -10 нм, (толщина внутриклеточных мембран составляет 6 нм). Толщина плазмолеммы увеличена за счет гликокаликса, состоящего из гликолипидов и гликопротеидов. Кнутри плазмолеммы прилежит субплазмолеммальный слой, состоящий из филаментов, включающих сократительные белки (актин, миозин, тропамиазин, альфа-актинин).

Функции плазмалеммы: 1) транспортная; 2) барьерная (отделяет содержимое клетки от окружающей ее среды); 3) рецепторная.

Транспортная функция. Хорошо известно, что через плазмолемму могут транспортироваться микромолекулы, макромолекулы, микрочастицы и капельки воды. Микромолекулы (ионы, молекулы воды, аминокислоты) могут транспор-тироваться под влиянием градиента концентрации и против градиента концен-трации; при транспортировке против градиента концентрации затрачивается эне-ргия, выделяемая при распаде аденозинтрифосфата (АТФ) - активный транспорт, под влиянием градиента концентрации - пассивный транспорт; для транспортировки натрия и калия имеется специальная Na+, K+ - аденозинтрифосфатаза (АТФ-аза. ).

Рецепторная функция. Рецепторы состоят из гликолипидов и гликопротеидов. Они могут быть диффузно рассеяны по поверхности цитолеммы или скон-центрированы в одном месте. При помощи рецепторов клетки узнают друг друга и, объединяясь, формируют ткани; рецепторы захватывают гормоны, антигены, антитела, эритроциты барана и другие вещества; при захвате гормона активируется аденилатциклаза, под влиянием которой синтезируется сигнальная молекула т. е. циклический аденозинмонофосфат (цАМФ), который активирует ферменты клетки. Сигнальной молекулой может быть кальмодулин.

Поглощение клеткой твердых и жидких частиц называется эндоцитозом. Эндоцитоз подразделяется на фагоцитоз и пиноцитоз.

Фагоцитоз - это поглощение макромолекул и макрочастиц. Этот процесс складывается из адгезии частицы к плазмолемме, которая затем впячивается внутрь клетки, втягивая туда частицу, и, наконец, отшнуровывается. В результате образуется фагосома, состоящая из частицы, окруженной мембраной. Мембрана фагосомы формируется за счет плазмолеммы, т. е. при фагоцитозе происходит расходование плаз- молеммы.

Пиноцитоз осуществляется аналогично фагоцитозу, только вместо плотной частицы захватывается капелька жидкости с растворенными в ней веществами, а захваченная капелька называется пиноцитозным пузырьком.

Если через плазмолемму вещества поступают из клетки во внешнюю среду, то это называется экзоцитозом. При экзоцитозе секреторная гранула или остаточное тельце, окруженные мембраной, приближаются к внутренней поверхности плазмолеммы. Мембрана гранулы и плазмолемма сливаются, разрываются и содержимое гранулы удаляется из клетки, а ее мембрана входит в состав плазмолеммы, т. е. при экзоцитозе плазмолемма как бы пополняется за счет мембран гранул.

Соединения клеток. Ткани, состоящие из клеток, не распадаются на отдель­ные клетки, потому что между клетками имеется сеть белков, обладающих адгезивными свойствами; кроме того между клетками имеются межклеточные контакты (junctio intercellularis). Среди контактов различают: простые, плотные, адгезивные пояски, десмосомы, щелевидные, по типу замка и межнейрональные синапсы.

Простые контакты (junctio intercellularis simplex) характеризуются тем, что плазмолеммы соседних клеток приближаются друг к другу на расстояние 15-20 нм, так что между клетками образуются межклеточные щели. Такие контакты обычно характерны для соединительнотканных клеток.

Плотные контакты, или замыкательные пластинки (zonula occludens) характеризуются тем, что цитолеммы клеток плотно прилежат друг к другу, закрывая межклеточные щели, такие контакты характерны для железистой эпителиальной ткани.

Адгезивные пояски (zonula adherens) - парные образования в виде лент, опо­ясывающих апикальную часть клеток, характерны для однослойных эпителиев. Здесь клетки связаны друг с другом интегральными гликопротеидами, к которым со стороны цитоплазмы той и другой клетки примыкает слой примембранных белков.

Десмосомы (desmosoma) имеют вид пятна диаметром 0, 5 мкм, характеризуются тем, что между цитолеммами двух клеток имеются слециальные белки, а с внутренней поверхности плазмолемм напротив них имеется электронноплотное вещество, пронизанное тончайшими фибриллами. Эти контакты характерны для клеток покровного эпителия. Их функция - механическая связь между клетками.

Полудесмосомы находятся в местах соединения эпителиальных клеток с ба-зальной мембраной, характеризуются тем, что электронноплотное вещество и фибриллы имеются только со стороны цитоплазмы клетки. Характерны для эпидермиса кожи.

Щелевидные контакты (nexus) характеризуются тем, что плазмолеммы смежных клеток приближаются друг к другу на расстояние 2-3 нм, в этом месте, занимающем всего около 1 мкм, имеются ионные канальцы, через которые между клетками происходит обмен ионами и молекулами воды. Такие контакты характерны для клеток гладкой мускулатуры и мышечных клеток сердечной мышцы.

Контакты по типу замка (junctio interdigitalis) характеризуются тем, что цитолемма одной клетки внедряется во впячивание другой клетки. Эти контакты выполняют функцию механической связи между клетками и характерны для клеток эпителиальной ткани.

Межнейрональные синапсы (synapsis) связывают нервные клетки, или их отростки, друг с другом и служат для передачи нервного импульса от клетки к клетке в одном направлени (от пресинаптического полюса к постсинаптическому).

Органеллы клетки. Органеллы - попостоянные структуры клетки, выпол-няющие определенные функции. Органеллы классифицируются на 1) мембранные и немембранные и 2) постоянные и специальные.

К мембранным органеллам относятся эндоплазматическая сеть (гранулярная и гладкая), комплекс Гольджи, лизосомы, пероксисомы, митохондрии.

Гранулярная эндоплазматическая сеть (reticulum endoplasmaticum granulosum) представлена мембранами, сформированными в цистерны, канальцы, везикулы, трубочки, покрытые рибосомами. Выполняет функции: синтез белков, транспортная. Гранулярная эндоплазматическая сеть (ЭПС) представленная параллельно расположенными цистернами, размещающимися в определенном месте, называется эргастоплазмой.

Если в клетке хорошо развита гранулярная ЭПС, то в ней активно синтезируются белки на экспорт, ферментные белки.

Гладкая эндоплазматическая сеть (reticulum endoplasmaticum nongranulosum) представлена канальцами, цистернами, везикулами, окруженными мембранами, лишенными рибосом. Выполняет функции: синтез углеводов, липидов, стероидных гомонов; дезинтоксикация ядовитых веществ, депонирование ионов Са 2+ в цистернах и транспорт синтезированных веществ.

Комплекс Гольджи (complexus Golgiensis) представлен внутриклеточными мембранами, формирующими цистерны, везикулы, канальцы. Несколько парал-лельно расположеных цистерн образуют диктиосомы. В железистых клетках ком-плекс Гольджи располагается над ядром, в нервных клетках - вокруг ядра, в хромаффинных клетках мозгового вещества надпочечников - в виде колпачка около ядра, в некотроых клетках комплекс Гольджи диспергирован.

Функции комплекса Гольджи:                             1) сегрегация (отделение от гиалоплазмы

синтезированных на ЭПС продуктов). Если в образовавшихся в результате сегрегации везикулах содержится секрет, то эти везикулы называются секреторными гранулами, если лизосомальные ферменты - лизосомами; 2) выделительная; 3) восстановление цитолеммы (при выделении секреторных гранул их мембрана входит в состав плаз- молеммы); 4) модификация (присоединение к поступившим из ЭПС продуктам углеводов и других веществ); 5) участие в формировании лизосом (на гранулярной ЭПС синтезируются лизосомальные ферменты, которые при посту-плении в комплекс Гольджи накапливаются в латеральных отделах цистерн, затем эти накопления в виде пузырьков отделяются от цистерн и превращаются в лизосомы).

Лизосомы (lysosomae) - везикулы, окруженные внутриклеточной мембраной и содержащие протеолитические ферменты - гидролазы. Маркерным ферментом лизосом является кислая фосфатаза. Лизосомы классифицмруются на 1) первичные; 2) вторичные и 3) третичные - остаточные тельца (corpusculum residuale). Первичные лизосомы образуются при участии грануляпной ЭПС и комплекса Гольджи (см. выше), их диаметр 0, 3-0, 4 мкм. Вторичные лизосомы образуются при слиянии первичных лизосом с фагосомами (фагоцитированными клеткой частицами). В результате взаимодействия ферментов с фагосомой происходит ее расщепление до мономеров, которые через мембрану лизосом транспортируются в гиалоплазму.

Если первичные лизосомы сливаются с органеллами клетки (рибосомами, митохондриями и др. ), то они называются аутофагосомами. Наличие в клетке большого количества аутофагосом является признаком саморазрушения клетки - метаболический стресс, патология клетки, повреждение клетки.

Третичные лизосомы, или остаточные тельца представляют собой пище­варительные вакуоли, в которых остались продукты, не подвергшиеся разрушению лизосомальными ферментами. Они удаляются из клетки путем экзоцитоза.

Функции лизосом: 1) участие во внутриклеточном пищеварении; наличие в клетке большого количества лизосом является признаком того, что эта клетка выполняет фагоцитарную функцию; 2) предотвращение гибели клетки. Если в клетке мало или нет лизосом, то она погибает от накопления углеводов и липидов.

Пероксисомы (peroxisoma) представляют собой разновидность лизосом. Их диаметр составляет от 0, 3 до 1, 5 мкм. В результате окисления аминокислот обра-зуется перекись водорода, которая является ядом для клетки и расщепляется при помощи пероксидазы этих органелл. Маркерным ферментом пероксисом является католаза.

Митохондрии (mitochondriae) имеют округлую, чаще вытянутую форму, их диаметр составляет 0, 3 мкм, длина 0, 5 мкм и более. Они окружены двойной мембраной. Между мембранами имеется межмембранное пространство. От внутренней мембраны отходят кристы. Между кристами расположен матрикс. В матриксе выявляются тонкие нити (2-3 нм) - митохондриальные ДНК, на которых транскрибируются РНК, и мелкие гранулы (15-20 нм) - митохондриальные ри-босомы.

Функции митохондрий. В митохондриях осуществляется: 1) синтез тринадцати видов митохондриальных белков; 2) образование АТФ из органических веществ и 3) фосфорилирование АДФ, в результате чего образуется АТФ.

К немембранным органеллам относятся рибосомы и клеточный центр. Рибосомы (ribosomae) образуются в ядрышке ядра, состоят из малой и большой субъединиц, их диаметр колеблется в пределах 20 - 25 нм, включают рибосомные РНК и рибосомные белки. Функция - в рибосомах осуществляется синтез белков. Рибосомы могут либо располагаться на поверхности мембран гранулярной ЭПС, либо свободно располагаться в гиалоплазме, образуя скопления - полисомы. Если в клетке хорошо развита гранулярная ЭПС, то эта клетка относится к диффе-ренцированным и синтезирует белки на " экспорт"; если в клетке слабо развита гранулярная ЭПС и много свободных рибосом и полисом, то эта клетка мало- дифференцированная и синтезирует белки для внутреннего употребления.

Клеточный центр (centrosoma, cytocentrum), или диплосома, состоит из двух центриолей. Одна из центриолей называется материнской, вторая - дочерней. Дочерняя центриоль располагается перпендикулярно по отношению к материнской. Каждая центриоль диплосомы имеет форму цилиндра шириной около 0, 2 и длиной до 0, 5 мкм. В состав стенки центриолей входят 9 триплетов микротубул (3х9+0). От микротубул отходят спутники (сателлиты). От диплосомы в разных направлениях идут микротубулы, которые в совокупности образуют центросферу.

Перед делением клетки центриоли клеточного центра расходятся к ее полюсам. В таком случае каждая из центриолей становятся материнской. К каждой материнской центриоли пристраивается новая дочерняя центриоль. Образование дочерней центриоли индуцируется материнской центриолью. Таким образом, в клетке перед делением имеется 2 клеточных центра.

Фунцикция клеточного центра проявляется в том, что в интерфазной клетке материнская центриоль индуцирует: 1) образование микротубул, формирующих цитоскелет клетки; 2) в конце интерфазы - образование дочерней центриоли. В делящейся клетке материнская центриоль индуцирует образование микротубул веретена деления.

Цитоскелет включает микротубулы, микрофиламенты и микрофибриллы. Микротубулы в делящейся клетке входят в состав веретена деления, в интерфазной клетке образуют цитоскелет, входят в состав ресничек, жгутиков и стенки центриолей. Внешний диаметр микротубул равен 24 нм, внутренний - около 15 нм, толщина стенки - 5 нм. В состав стенки микротубул входят 13 протофиламентов, каждый из которых состоит из белков-тубулинов (субъединиц), наложенных один на другой в виде дисков. Самосборка микротубул происходит в гиалоплазме под влиянием материнской центриоли. При снижени температуры ниже температуры тела самосборка микротрубочек прекращается, а уже образовавшиеся микротубулы начинают распадаться, клетка утрачивает свою обычную форму. Распад микротубул происходит и под влиянием колхицина.

Функции микротубул: 1) являются цитоскелетом, сохраняя определенную форму клетки; 2) участвуют во внутриклеочном дижении; 3) участвуют в движении ресничек и жгутиков. При внутриклеточном движении осуществляется перемещение в гиалоплазме вакуолей, митохондрий и др. Перемещение происходит с участием белков- транслокаторов, которые прикрепляются к транспортируемым структурам, движущимся вдоль микротубул как по рельсам.

Микрофиламенты (microfilamenti) - нитчатые структуры диаметром около 6 нм, состоят из сократительных белков актина, миозина, тропомиозина, альфа-актинина; располагаются под цитолеммой, образуя примембранный слой. При со-кращении микрофиламентов цитолемма втягивается внутрь клетки при фагоцитозе, пиноцитозе и при телофазе во время разделения вновь образующихся клеток. Микрофиламенты участ­вуют в выбрасывании псевдоподий при амебовидном движении клеток.

Функции микрофиламентов: 1) образуют цитоскелет; 2) участвуют во внутрикле­точном движении (пермещении митохондрий, рибосом, вакуолей, втягивании цитолеммы при фагоцитозе); 3) участвуют в амебовидном движении клеток.

Микрофибриллы (microfibrillae) - нитчатые структуры диаметром около 10 нм, состоят из фибриллярных белков. Эти белки в клетках различных тканей неодинаковы. Фибрилляными белками в эпителиальных тканях являются кератины, фибробластах соединительной ткани - виментин, в клетках гладкой мышечной ткани - десмин.

Функциональное значение микрофибрилл (промежуточных филаментов): 1) образуют скелет клетки; 2) по характеру фибриллярного белка можно определить, из какой ткани развилась опухоль. Например, если в опухоли обнаружен кератин, значит, она образовалась из эпителиальной ткани; если виментин - из соединитель-ной ткани и т. д.

Реснички (cilii) - специальные органеллы движения представляют собой выросты эпителиальных клеток высотой 5 -10 мкм, диаметром около 300 нм. В осно-ве ресничек находится аксонема (filamenta axialis), состоящая из 9 пар пери-ферических и 1-й пары центральных микротубул (2 х 9 + 2), прикрепляющихся к ба-зальному тельцу (видоизмененной центриоли). Аксонема снаружи покрыта цитолеммой.

Функции ресничек: реснички осуществляют движения колебательные, круговые, крючкообразные. Благодаря движению ресничек эпителия дыхательных путей очищается поверхность слизистой оболочки от посторонних частиц и слизи. Однако под воздействием вдыхаемого курильщиками дыма ресники склеиваются и прекра-щается удаление микроорганизмов, частиц пыли и т. п. с поверхности слизистой оболочки трахеи и бронхов, в результате развивается хронический бронхит.

Жгутики (flagellum) - выросты клеток, длиной до 150 мкм. В основе их также лежит аксонема, покрытая цитолеммой и прикрепляющаяся к базальному тельцу. Толщина аксонемы и базального тельца жгутиков и ресничек равна 200 нм. Жгутики содержатся в сперматозоидах.

Функции жгутиков: благодаря колебаниям жгутиков клетки движутся в жидкости.

Микроворсинки - выросты цитоплазмы клеток длиной около 1 мкм, диаметром около 100 нм, покрыты цитолеммой, в их основе имеются пучки микрофиламентов.

Функции микроворсинок: увеличивают поверхность клеток, в кишечном и почечном эпителии осуществляют всасывающую функцию.

Включения цитоплазмы (inclusiones cytoplasmae). Включения цитоплазмы - не - постоянные компоненты клеток, возникающие и исчезающие в зависимости от клеточного метаболизма.

Классификация включений. Включения делятся на трофические (белковые, углеводные, липидные), секреторные, экскреторные (продукты, подлежащие удалению из клетки и организма), пигментные, которые подразделяются на экзогенные (частицы пыли, каротин, красители) и эндогенные (гемоглобин, миоглобин, липофусцин, гемосидерин, меланин, липохромы, билирубин).

Лекция 2

ЯДРО

Ядро (nucleus) имеет различную форму, чаще - округлую, овальную, реже па­лочковидную или неправильную. Форма ядра иногда зависит от формы клетки. Так, например, у гладких миоцитов, которые имеют веретеновидную форму, ядро па­лочковидной формы. Обычно в круглых клетках или кубических эпителиоцитах ядра имеют круглую форму. Например, лимфоциты крови имеют круглую форму и ядра у них обычно круглые. Но часто форма ядра не зависит от формы клеток. Например, в гранулоцитах крови, которые имеют круглую форму, ядро может иметь сегментированную или палочковидную форму. В нейтрофильных гранулоцитах крови женщины ядра могут иметь спутник или сателлит, который представляет собой половой хроматин, имеющий форму барабанной палочки.

Что же такое ядро? Это - система генетической детерминации и регуляции синтеза белка. Что такое детерминация? Детерминация - это предопределение или, проще говоря, это программа, по которой развивается клетка.

Таким образом, ядро выполняет 2 функции: 1) хранение и передача наследственной информации дочерним клеткам; 2) регуляция синтеза белка.

Как осуществляется 1-я функция? Хранение наследственной информации обе­спечивается тем, что в ДНК хромосом есть репарационные ферменты, которые восстанавливают хромосомы ядра после их повреждения. Как передается наследственная информация дочерним клеткам? Во время интерфазы к каждой молекуле ДНК пристраивается ее точная копия. Затем эти совершенно одинаковые копии ДНК равномерно распределяются между дочерними клетками при делении материнской клетки. Как же ядро участвует в регуляции синтеза белка? Синтез белка регулируется благодаря тому, что на поверхности ДНК хромосом транскрибируются все виды РНК: информационные, рибосомные и транспортные, которые участыуют в синтезе белка на поверхности гранулярной ЭПС цитоплазмы клеток. В том случае, если увеличивается количество всех этих РНК и рибосом, повышается синтез белка. Если же в ядре вырабатывется малое количество РНК, то синтез белка снижается. Так ядро участвует в регуляции белкового синтеза.

СТРОЕНИЕ ЯДРА

Ядро включает хроматин (chromatinum), ядрышко (nucleolus), ядерную оболочку (nucleolemma) и ядерный сок (nucleoplasma). Хроматин интерфазного ядра называется так потому, что способен воспринимать (окрашиваться) основные красители. Что же такое хроматин? Хроматин - это деспирализованные хромосомы, т. е. хромосомы, утратившие свою обычную форму. В том случае, если участок ДНК хромосомы наиболее диспергирован, то в этом месте образуется рыхлый хроматин, называемый эухроматином (euchromatinum), который обладает высокой активностью. В том случае, если участок ДНК хромосом не диспергирован, то он имеет уплотненную структуру. Такой хроматин называется гетерохроматином (heterochromatinum). Гетерохроматин не активен.

Почему же эухроматин активен, а гетерохроматин неактивен? Активность эу- хроматина объясняется тем, что фибриллы ДНК хромосом при этом деспирализованы, т. е. гены, на поверхности которых происходит транскрипция РНК, открыты. Бланодаря этому создаются условия для транскрипции РНК. В том случае, если ДНК хромосом не деспирализованы, то гены здесь закрыты, что затрудняет транскрипцию РНК с их по­верхности. Следовательно, уменьшается количество РНК и снижается синтез белка. Вот почему гетерохроматин не активен.

Фибриллы ДНК. И в состав митотических хромосом, и в хроматин интерфазного ядра входят нити - примитивные или элиментарные фибриллы, которые состоят из ДНК в количестве 1 единицы, гистоновых и негистоновых белков, составляющих 1, 3 единицы, и РНК, количество которых равно 0, 2 единицы. Длина фибрилл может составлять от нескольких сот мкм до 7 см. Суммарная длина фибрил всех хромосом ядра человека составляет 170 см. В фибриллах имеются участки независимой репликации хромосом, называемые репликонами, их длина составляет 30 мкм, общее количество в геноме человека до - 50 000.

Гистоновые белки образуют блоки, каждый из которых состоит из 8 молекул. Эти блоки называются нуклеосомами. На нуклеосомы навертывается фибрилла ДНК толщиной 5 нм, толщина нуклеосомы вместе с фибриллой составляет 10 нм. При дальнейшей спирализации этой уже спирализованной фибриллы ее толщина достигает 20 нм. Среди белков хроматина гистоновые белки составляют до 80%. Их функции: 1) особой укладке ДНК хромосом и 2) регуляции синтеза белка. Регуляция синтеза белка осуществляется через укладку фибрилл ДНК хромосом. Если при укладке фибрилл ДНК имеет место резкая конденсация, то образуется плотный хроматин (гетерохроматин), который, как уже известно, неактивен, если при укладке фибрилл они слабо спирализуются, то образуется активный эухроматин. Функция негистоновых белков заключается в том, что они формируют ядерный матрикс.

Количество РНК в составе хроматина составляет 0, 2 единицы. Это нити РНК транскрибированные с поверхности генов ДНК. Они называются перихромати-новыми. Имеются РНК в виде гранул. Они могут быть интрахроматиновыми и перихроматиновыми; представляют собой соединение иРНК с белками и называются информосомами.

Ядрышки. Ядрышек в ядре от 1 до 3. Формируются ядрышки на поверхности ядрышковых организаторов хромосом. Если ядрышковые организаторы сконцентри­рованы в одном месте, то в ядре будет только одно ядрышко, а если в нескольких местах - несколько ядрышек. В том месте, где находятся ядрышковые организаторы хромосом, имеется несколько сот генов, на поверхности которых транскрибируются рибосомные РНК, из которых затем формируются субъединицы рибосом. Ядрышки состоят из двух компонентов: 1) фибриллярного, расположенного в центре, и 2) гранулярного, локализованного на поверхности. Фибриллярный компонент - это

фибриллы РНК, транскрибированные с поверхности генов ядрышковых организа-торов. Гранулярный компонент - это субъединицы рибосом. Субъединицы рибосом образуются в результате комплексирования (соединения) рибосомных белков с фибриллами рибосомных РНК. Рибосомные белки синтезируются на поверхности гранулярной ЭПС цитоплазмы и через ядерные поры поступают в ядро, где соединяются с рРНК. Образовавшиеся субъединицы рибосом через ядерные поры транспортируются в цитоплазму клетки, где объединяются в рибосомы, которые оседают на поверхности гранулярной ЭПС или же образуют скопления в цитоплазме. Такие объединения рибосом в цитоплазме называются полисомами. Таким образом, регуляцию синтеза бел­ка в клетке осуществляет ядрышко, так как на рибосомах, образующихся в ядрышках, происходит синтез белков.

Ядрышки могут исчезать и в норме, и при патологии. Когда ядрышки исчезают в норме? В норме ядрышки исчезают в том случае, когда приходит период деления клетки и начинается спирализация фибрилл ДНК в том числе и в области ядрышковых организаторов; тогда закрываются гены ядрышковых организаторов, на которых транскрибируются рРНК, прекращается транскрипция рРНК и ядрышко исчезает. Это может быть и в том случае, если на клетку воздействуют какие-то таксические вещества. Перед исчезновением ядрышко расчленяется, т. е. обосо-бляется внутренняя фибриллярная часть от внешней гранулярной части. Затем исчезает гранулярный компонент ядрышка, т. е. субъединицы рибосом, и исчезают фибриллярный компонент, т. е. молекулы рРНК. Таким образом, чем больше размеры ядрышек или больше их количество, тем интенсивнее образуются субъединицы рибосом и повышается синтез белка в клетке.

Ядерная оболочка. Ядерная оболочка (nucleolemma) состоит из двух мембран: наружной (membrana nuclearis externa) и внутренней (membrana nuclearis interna). Между мембранами имеется пространство (cysterna nucleolemmae).

Наружная ядерная мембрана покрыта рибосомами и тесно связана с ЭПС. Не­редко можно видеть, как наружная мембрана продолжается в канальцы гранулярной ЭПС.

Внутренняя ядерная мембрана связана с хроматином и фибриллярным ядерным компонентом. В нуклеолемме имеются ядерные поры (pori nuclearis). В их состав входят поровые комплексы (complexus pori), в составе которых имеются: отверстие поры (annulus pori) диаметром около 90 мкм, гранулы поры (granula pori) и мембрана поры (membrana pori).

Отверстие поры образуется в результате слияния наружной и внутренней мембран. Гранулы поры располагаются в 3 ряда, по 8 гранул в каждом ряду. Размеры гранул около 25 нм. Гранулы каждого ряда располагаются по периферии порового отверстия. Наружный слой гранул обращен в сторону цитоплазмы, внутренний слой - в сторону кариоплазмы, а третий слой размещен между наружным и внутренним. От гранул отходят фибриллы. Эти фибриллы соединяются с центральной гранулой, образуя мембрану поры (membrana pori).

Функция ядерных пор заключается в том, что через них происходит обмен веществ между кариоплазмой и цитоплазмой клетки. Чем больше пор в нуклеолемме, тем активнее ядро. Если активность ядра снижена, то количество пор уменьшается; если синтетическая активность ядра близка к нулю, то поры в ядре отсутствуют. Например, поры отсутствуют в кариолемме ядра сперматозоида.

При различных неблагоприятных воздействиях в ядре могут наблюдаться патологические изменения: пикноз - коагуляция хроматина ядра, кариорексис - распад ядра на части, может быть отечность перинуклеарного пространства.

КЛЕТОЧНЫЙ ЦИКЛ

Клеточный цикл (cyclus cellularis) - это период от одного до другого деления клетки или же период от деления клетки до ее гибели. Клеточный цикл разделяется на 4 периода. Первый период - митотический; 2-й - постмитотический, или пресинтетический, он обозначается буквой G1; 3-й - синтетический, он обозначается буквой S; 4-й - постсинтетический или премитотический, он обозначается буквой G2, а митотический период - буквой М. После митоза наступает очередной период G1. В этот период дочерняя клетка по своей массе в 2 раз меньше материнской клетки. В этой клетке в 2 раза меньше белка, ДНК и хромосом, т. е. в норме хромосом в ней должно быть 2n и ДНК - 2с.

Что же происходит в периоде G1? В это время на поверхности ДНК происходит транскрипция РНК, которые принмают участие в синтезе белков. За счет белков уве­личивается масса дочерней клетки. В это время синтезируются предшественники ДНК и ферменты, участвующие в синтезе ДНК и предшественников ДНК. Основные процессы в G1 периоде - синтез белков и рецепторов клетки. Затем наступает период S. В течение этого периода происходит репликация ДНК хромосом. В результате этого к концу периода S содержание ДНК составляет 4с. Но хромосом будет 2n, хотя фактически их тоже будет 4n, но ДНК хромосом в этот период так взаимно переплетены, что каждая сестринская хромосома в материнской хромосоме пока не видна. По мере того, как в результате синтеза ДНК увеличивается ее количество и повышается транскрипция рибосомных, информационных и транспортных РНК, естественно возрастает и синтез белков. В это время может происходить удвоение центриолей в клетках. Таким образом, клетка из периода S вступает в период G2. В начале периода G-2 продолжается активный процесс транскрипции различных РНК и процесс синтеза белков, главным образом белков-тубулинов, которые необходимы для веретена деления. Может происходить удвоение центриолей. В митохондриях интенсивно синтезируется АТФ, которая является источником энергии, а энергия необходима для митотического деления клетки.

После периода G2 клетка вступает в митотический период. Период G1 продолжается от нескольких часов до нескольких лет, периоды S и G2 - в совокупности около 12 часов.

Принято считать, что в период S к каждой молекуле ДНК пристраивается ее точная копия. В действительности вновь синтезированная молекула ДНК (дочерняя) на несколько нуклиотидных пар короче материнской. Укорачиваются «хвосты» дочерних ДНК, на которых удерживаются ферменты, катализирующие синтез ДНК. С исчезновением «хвостов» прекращается репликация ДНК и дальнейшее деление клеток, т. е. клетки не могут бесконечно долго делиться. Например, деление фибробластов в культуре тканей повторяется около 60 раз, после чего митоз прекращается.

Некоторые клетки могут выходить из клеточного цикла. Выход клетки из клеточного цикла обозначается буквой G-о. Клетка, вошедшая в этот период, утрачивает способность к митозу. Причем, одни клетки утрачивают способность к митозу временно, дугие - постоянно.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...