Гранулоциты 5 страница
Блестящий слой (stratum lucidum) характеризуется распадом ядер клеток этого слоя, иногда полным разрывом ядер (кариорексис), иногда - растворением (кариолизис). Гранулы кератогиалина в их цитоплазме сливаются в крупные структуры, включающие фрагменты микрофибрилл, пучки которых цементируются филаггрином, что означает дальнейшее ороговение кератина (фибриллярного белка). В результате этого процесса образуется элеидин. Элеидин не окрашивается, но зато хорошо преломляет лучи света и поэтому блестит. По мере дальнейшей дифференцировки клетки блестящего слоя смещаются в следующий роговой слой. Роговой слой (stratum corneum) - здесь клетки окончательно утрачивают ядра. Вместо ядер остаются пузырьки, заполненные воздухом, а элеидин подвергается дальнейшему ороговению и преобразуется в кератин. Клетки превращаются в чешуйки, в цитоплазме которых содержатся кератин и остатки тонофибрилл, цитолемма утолщаяется за счет кератоламинина. По мере того, как разрушается цемнтирующее вещество, связывающее чешуйки, последние слущиваются с поверхности кожи. В течение 10-30 суток происходит полное обновление эпидермиса кожи. Не все участки эпидермиса кожи имеют 5 слоев. 5 слоев имеются только в толстом эпидермисе: на ладонной поверхности кистей рук и подошвах стоп ног. Остальные участки эпидермиса не имеют блестящего слоя, и поэтому там он (эпидермис) тонше. Функции многослойного плоского ороговевающего эпителия: 1) барьерная; 2) защитная; 3) обменная. Переходный эпителий (epithelium transitinale) выстилает мочевыделительные пути, развивается из мезодермы - частично из аллантоиса. Этот эпителий включает 3 слоя: базальный, промежуточный и поверхностный. Клетки базального слоя мелкие, темные; промежуточного - более крупные, светлые, имеют грушевидную форму; поверхностного слоя - самые крупные, содержат одно или несколько круглых ядер. В остальных многослойных эпителиях поверхностные клетки мелкие. Эпителиоциты поверхнсного слоя переходного эпителия соединяются друг с другом при помощи замыкательных пластинок. Эпителий называется переходным потому, что имеет черты многорядного однослойного и многослойного эпителия. При растяжении стенки мочевыделительных органов, например мочевого пузыря, в момент наполнения его мочой толщина эпителия уменьшается, поверхностные клетки уплощаются. При удалении мочи из мочевого пузыря эпителий утолщается, поверхностные клетки приобретают куполовидную форму.
Функция этого эпителия - барьерная (препятствует выходу мочи через стенку мочевого пузыря). ЖЕЛЕЗИСТЫЙ ЭПИТЕЛИЙ Клетки железистого эпителия входят в состав желез и называются гландулоцитами. Различают экзокринные и эндокринные железы. Экзокринные железы выделяют секрет на поверхность тела или же в полости организма. Эндокринные железы выделяют секрет в кровь или лимфу. Железы могут быть мелкими и входить в состав отдельных органов (железы желудка, пищевода, трахеи, бронхов), могут быть большими, массой до кг и более (печень). Обычно гландулоциты экзокринных и эндокринных желез секретируют циклично. Секреторный цикл состоит из 4 фаз: 1) поступление исходных продуктов для синтеза секрета; 2) синтез и накопление секрета; 3) выделение секрета; 4) восстановление клетки после выделения секрета. 1-я фаза характеризуется тем, что из кровеносных капилляров через базальную мембрану в клетку поступают исходные продукты: вода, аминокислоты, белки, углеводы и минеральные соли. 2-я фаза характеризуется тем, что на эндоплазматическую сеть поступают исходные вещества и происходит синтез секрета. Далее эти вещества по канальцам ЭПС транспортируются в сторону комплекса Гольджи и накапливаются в периферических отделах его цистерн. Затем они отделяются от цистерн и превращаются в секреторные гранулы, которые накапливаются в апикальной части клетки.
В 3-й фазе, в зависимости от характера выделения секрета различают 3 типа секреции: а) мерокриновый; б) апокриновый, который подразделяется на макро- и микроапокриновый, и в) голокриновый. Мерокриновый тип секреции характеризуется тем, что секрет выделяется путем экзоцитоза без разрушения клетки. Микроапокриновый тип секреции характеризуется разрушением микроворсинок; макроапокриновый - отрывом и разрушением апикальной части клетки. При голокриновом типе секреции разрушается вся клетка и входит в состав секрета. Мерокриновый тип секреции характерен для слюнных желез; апокриновый - для потовых и молочных желез, поэтому в просветах секреторных отделов лактирующих молочных желез встречаются фрагменты цитоплазмы клеток; голокриновый тип секреции характерен для сальных желез кожи. При 4-й фазе происходит восстановление разрушенных структур клетки. При мерокриновом типе секреции клетка не нуждается в восстановлении; при апокриновом типе происходит регенерация или восстановление апикальной части клетки; при голокриновом типе секреции вместо погибших образуются новые клетки путем митотического деления камбиальных клеток, лежащих на базальной мембране. Кроме того, существуют железы, клетки которых секретируют спонтанно, или диффузно. В гландулоцитах таких клеток одновременно происходит и синтез и выделение секрета. К таким железам относится кора надпочечников. ЭКЗОКРИННЫЕ ЖЕЛЕЗЫ Для них характерно то, что они обязательно состоят из концевых отделов (portio terminalis) и выводных протоков (ductus excretorius). Эти железы вырабатывают секрет и выделяют его либо на поверхность тела, либо в полости органов. К экзокринным железам относятся слюнные железы (околоушная, подчелюстная, подъязычная), малые слюнные железы (губные, щечные, язычные, небные), железы пищевода, желудка, кишечника. Классификация экзокринных желез. Экзокринные железы делятся на простые и сложные. Простыми называются такие железы, у которых выводной проток не ветвится. Простые железы могут быть разветвленными и неразветвленными. Неразветвленными называются такие железы, у которых концевой отдел не ветвится. Если концевые отделы простой железы подвергаются ветвлению, то такая железа называется разветвленной. В зависимости от формы концевых отделов простые железы делятся на альвеолярные, если концевой отдел имеет форму пузырька или альвеолы, и трубчатые, если концевой отдел имеет форму трубочки.
Таким образом, простые железы классифицируются на простые неразветвленные и простые разветвленные, которые могут быть альвеолярными или трубчатыми. В сложных альвеолярных железах выводные протоки ветвятся. Если в сложной железе ветвятся и выводные протоки, и концевые отделы, то такая железа называется сложной разветвленной. Если в сложной железе концевые отделы не ветвятся, то такая железа называется сложной неразветвленной. Если в сложной железе имеются только альвеолярные концевые отделы, то она называется сложной альвеолярной. Если в сложной железе имеются только трубчатые концевые отделы, то она называется сложной трубчатой железой. Если в сложной железе имеются и альвеолярные, и трубчатые концевые отделы, то она называется сложной трубчато-альвеолярной железой. Классификация экзокринных желез в зависимости от характера секрета. Если секрет слизистый, то железы называются слизистыми; если секрет белковый, или серозный, то и железы называются серозными; если железа выделяет и слизистый, и белковый секрет, то она называется смешанной; если железа выделяет сальный секрет, то она называется сальной. Таким образом, железы подразделяются на слизистые, серозные и сальные. Можно еще выделить молочные железы. Классификация желез в зависимости от типа секреции. Если железа выделяет секрет по мерокриновому типу, то она называется мерокриновой; если секретирует по апокриновому типу, то - апокриновой; если по голокриновому типу - голокриновой. Таким образом, по характеру типа секреции железы делятся на мерокриновые, апокриновые и голокриновые.
Если железы развиваются из кожной эктодермы (слюнные, потовые, сальные, молочные, слезные), то их выводные протоки выстланы многослойным эпителием. Кроме того в концевых отделах этих желез имеются миоэпителиальные клетки, расположенные между базальной поверхностью гландулоцитов и базальной мембраной. Значение миоэпителиальных клеток заключается в том, что при сокращении миоэпителиальных клеток сдавливается основание гландулоцитов, из которых при этом выделяется секрет. ЭНДОКРИННЫЕ ЖЕЛЕЗЫ Их секрет называется гормоном и выделяется в кровь или лимфу. Поэтому в эндокринных железах нет выводных протоков, но зато они лучше кровоснабжаются, чем экзокринные. Примерами эндокринных желез являются щитовидная и околощитовидные железы, гипофиз, мозговой эпифиз и надпочечники. Лекция 5 КРОВЬ И ЛИМФА КРОВЬ Кровь (sanquis) является составной частью системы крови. Система крови включает: 1) кровь, 2) органы кроветворения, 3) лимфу. Все компоненты системы крови развиваются из мезенхимы. Кровь локализуется в кровеносных сосудах и сердце, лимфа - в лимфатических сосудах. К органам кроветворения относятся красный костный мозг, тимус, лимфатические узлы, селезенка, лимфатические узелки пищеварительного тракта, дыхательных путей и других органов. Между всеми компанентами системы крови имеется тесная генетическая и функциональная связь. Генетическая связь заключается в том, что все компоненты системы крови развиваются из одного и того же источника. Функциональная связь между органами кроветворения и кровью заключается в том, что в крови постянно в течение суток погибают несколько миллионов клеток. В то же время в органах кроветворения в нормальных условиях образуется точно такое же количество кровяных клеток, т. е. уровень форменных элементов крови отличается постоянством. Баланс между гибелью и новообразованием клеток крови обеспечивается регуляцией со стороны нервной и эндокринной систем, микроокружением и внутритканевой регуляцией в самой крови. Что такое микроокружение? Это клетки стромы и макрофаги, находящиеся вокруг развивающихся клеток крови в органах кроветворения. В микроокружении вырабатываются гемопоэтины, которые стимулируют процесс кроветворения. Что означает «внутритканевая регуляция»? Дело в том, что в зрелых гранулоцитах вырабатываются кейлоны, которые тормозят развитие молодых гранулоцитов. Существует тесная связь между кровью и лимфой. Эту связь можно продемонстрировать следующим образом. В соединительной ткани имеется основное межклеточное вещество (внутритканевая жидкость). В формировании межклеточного вещества принимает участие кровь. Каким образом?
Из плазмы крови в соединительную ткань поступают вода, белки и другие органические вещества и минеральные соли. Это и есть основное межклеточное вещество соединительной ткани. Здесь же рядом с кровеносными капиллярами располагаются слепо заканчивающиеся лимфатические капилляры. Слепо заканчивающиеся - это значит, что они похожи на резиновый колпачок глазной пипетки. Через стенку лимфатических капилляров основное вещество поступает (дренируется) в их просвет, т. е. компоненты межклеточного вещества поступают из плазмы крови, проходят через соединительную ткань, проникают в лимфатические капилляры и преобразуются в лимфу. Таким же путем из кровеносных капилляров в лимфатические могут поступать и форменные элементы крови, которые из лимфатических сосудов могут рециркулировать снова в кровеносные. Существует тесная связь между лимфой и органами кроветворения. Лимфа из лимфатических капилляров поступает в приносящие лимфатические сосуды, впадающие в лимфатические узлы. Лимфатические узлы - это одна из разновидностей органов кроветворения. Лимфа, проходя через лимфатические узлы, очищается от бактерий, бактериальных токсинов и др. вредных веществ. Кроме того из лимфатических узлов в протекающую лимфу поступают лимфоциты. Таким образом, лимфа очищенная от вредных веществ и обогащенная лимфоцитами, поступает в более крупные лимфатические сосуды, затем в правый и грудной лимфатические протоки, которые впадают в вены шеи, т. е. очищенное и обогащенное лимфоцитами основное межклеточное вещество снова возвращается в кровь. Из крови вышло и в кровь вернулось. Существует тесная связь между соединительной тканью, кровью и лимфой. Дело в том, что между соединительной тканью и лимфой происходит обмен вещест и между лимфой и кровью тоже осуществляется обмен веществ. Обмен веществ между кровью и лимфой происходит только через соединительную ткань. Строение крови. Кровь (sanquis) относится к тканям внутренней среды. Поэтому как и все ткани внутренней среды она состоит из клеток и межклеточного вещества. Межклеточным веществом является плазма крови, к клеточным элементам относятся эритроциты, лейкоциты и тромбоциты. В других тканях внутренней среды межклеточное вещество имеет полужидкую консистенцию (рыхлая соединительная ткань) или плотную консистенцию (плотная соединительная ткань, хрящевая и костная ткани). Поэтому различные ткани внутренней среды выполняют различную функцию. Кровь выполняет трофическую и защитную функции, соединительная ткань - опорномеханическую, трофическую и защитную, хрящевая и костная ткани - опорномеханическую и функцию механической защиты. Форменные элементы крови составляют примерно 40-45%, все остальное - плазма крови. Количество крови в организме человека составляет 5-9% от массы тела. Функции крови: 1) транспортная; 2) дыхательная; 3) трофическая; 4) защитная; 5) гомеостатическая (поддержание постоянства внутренней среды). Плазма крови включает 90-93% воды, 6-7, 5% белков, среди которых - альбумины, глобулины и фибриноген, а остальные 2, 5-4% составляют другие органические вещества и минеральные соли. За счет солей поддерживается постоянное осмотическое давление плазмы крови. Если из плазмы крови удалить фибриноген, то останется сыворотка крови. Плазма крови имеет рН 7, 36. Эритроциты. Эритроциты (erythrocytus) составляют в 1 л мужской крови 4-5, 5х1012, у женщин несколько меньше т. е. 3, 7-5х1012. Повышенное количество эритроцитов называется эритроцитозом, пониженное - эритропенией. Форма эритроцитов. 80% составляют эритроциты в виде двояковогнутых дисков (дискоциты); у них края толще (2-2, 5 мкм), а центр тоньше (1 мкм), поэтому центральная часть эритроцита более светлая. Кроме дискоцитов имеются и другие формы: 1) планоциты; 2) стоматоциты; 3) двуямочные; 4) седловидные; 5) шаровидные, или сфероциты; 6) эхиноциты, у которых имеются отростки. Сфероциты и эхиноциты - это клетки, заканчивающие свой жизненный цикл. Диаметр дискоцитов может быть различным. 75% дискоцитов имеют диаметр 7-8 мкм, они называются нормоцитами; 12, 5% - 4-6 мкм (микроциты); 12, 5% - более 8 мкм (макроциты). Эритроцит - это безъядерная клетка, или постклеточная структура, в нем отсутствуют ядро и органеллы. Плазмолемма эритроцита имеет толщину 20 нм. На поверхности плазмолеммы могут быть адсорбированы гликопротеиды, аминокислоты, протеины, ферменты, гормоны, лекарственные и другие вещества. На внутренней поверхности плазмолеммы локализованы гликолитические ферменты, Na-АТФ-аза, К- АТФ-аза. К этой поверхности прилежит гемоглобин. Плазмолемма эритроцитов состоит из липидов и белков примерно в одинаковом количестве, гликолипидов и гликопротеидов - 5%. Липиды представлены двумя слоями липидных молекул. В состав наружного слоя входят фосфатидилхолин и сфингомиелин, внутреннего слоя - фосфатидилсерин и фосфатидилэтаноламин. Белки представлены мембранными (гликофорин и белок полосы 3) и примембранными (спектрин, белки полосы 4. 1, актин). Гликофорин своим центральным концом связан с " узловым комплексом"; проходит через билипидный слой цитолеммы и выходит за его пределы, участвует в формировании гликокаликса и выполняет рецепторную функцию. Белок полосы 3 - трансмембранный гликопротеид, его полипептидная цепь много раз проходит в одном и другом направлении через билипидный слой, образует гидрофильные поры в этом слое, через которые проходят анионы НСО-3 и Cl- в тот момент, когда эритроциты отдают СО2, а анион НСО-3 замещается анионом Cl-. Примембранный белок спектрин имеет вид нити длиной около 100 нм, состоит из 2 полипептидных цепей (альфа-спектрина и бета-спектрина), одним концом связан с актиновыми филаментами " узлового комплекса", выполняет функцию цитоскелета, благодаря которому сохраняется правильная форма дискоцита. Спектрин связан с белком полосы 3 при помощи белка анкерина. " Узелковый комплекс" состоит из актина, белка полосы 4. 1 и концов белков спектрина и гликофорина. Олигосахариды гликолипидов и гликопротеидов образуют гликокаликс. От них зависит наличие агглютиногенов на поверхности эритроцитов. Агглютиногены эритроцитов - А и В. Агглютинины плазмы крови - алфа и бета. Если в крови одновременно окажутся “чужой” агглютиноген А и агглютинин альфа или “чужой” агглютиноген В и агглютинин бета, то произойдет склеивание (агглютинация) эритроцитов. Группы крови. По содержанию агглютиногенов эритроцитов и агглютининов плазмы различают 4 группы крови: группа I(0) - нет агглютиногенов, есть агглютинины альфа и бета; группа 11(A) - есть агглютиноген А и агглютинин бета; группа Ш(В) есть агглютиноген В и агглютинин альфа; группа IV(AB) есть агглютиногены А и В, нет агглютининов. На поверхности эрироцитов у 86% людей имеется резус-фактор - агглютиноген (Rh). У 14% людей нет резус-фактора (резус-отрицательные). При переливании резус- положительной крови резус-отрицательному реципиенту образуются резус-антитела, которые вызывают гемолиз эритроцитов. На цитолемме эритроцитов адсорбируются избытки аминокислот, поэтому содержание амнокислот в плазме крови сохраняется на одинаковом уровне. В состав эритроцита входит около 40% плотного вещества, все остальное - вода. 95% плотного (сухого) вещества составляет гемоглобин. Гемоглобин состоит из белка " глобина" и железосодержащего пигмента - гема. Различают 2 разновидности гемоглобина: 1) гемоглобин А, т. е. гемоглобин взрослых; 2) гемоглобин F (фетальный) - гемоглобин плода. У взрослого человека содержится 98% гемоглобина А, у плода или новорожденного - 20%, остальное составляет фетальный гемоглобин. После гибели эритроцит фагоцитируется макрофагом в селезенке. В макрофаге гемоглобин распадается на билирубин и гемосидерин, содержащий железо. Железо гемосидерина переходит в плазму крови и соединяется с белком плазмы трансферрином, тоже содержащим железо. Это соединение фагоцитируется специальными макрофагами красного костного мозга. Затем эти макрофаги передают молекулы железа развивающимся эритроцитам отчего они и называются клетками-кормилками. Эритроцит обеспечивается энергией благодаря гликолитическим реакциям. За счет гликолиза в эритроците синтезируются АТФ и НАД-Н2. АТФ необходима как источник энергии, за счет которой через плазмолемму транспортируются различные вещества, в том числе ионы K+, Na+, благодаря чему сохраняется оптимальное равновесие осматического давления между плазмой крови и эритроцитами, а также обеспечивается правильная форма эритроцитов. НАД-Н2 необходима для сохранения гемоглобина в активном состоянии, т. е. НАД-Н2 препятствует превращению гемоглобина в метгемоглобин. Метгемоглобин - это прочное соединение гемоглобина с каким-либо химическим веществом, например - с СО. Такой гемоглобин не способен транспортировать кислород или углекислый газ. У заядлых курильщиков такого гемоглобина содержится около 10%. Он абсолютно бесполезен для курильщика. К непрочным соединениям гемоглобина относятся оксигемоглобин (соединение гемоглобина с кислородом) и карбоксигемоглобин (соединение гемоглобина с углекислым газом). Количество гемоглобина в 1 л здорового человека составляет 120160 г. В крови человека имеется 1-5% молодых эритроцитов - ретикулоцитов. В ретикулоцитах сохраняются остатки ЭПС, рибосом и митохондрий. При субвитальной окраске в ретикулоците видны остатки этих органелл в виде ретикулофиламентозной субстанции. От этого и произошло название молодого эритроцита - ретикулоцит. В ретикулоцитах на остатках ЭПС осуществляется синтез белка глобина, необходимого для образования гемоглобина. Ретикулоциты дозревают в синусоидах красного костного мозга или в периферических сосудах. Продолжительность жизни эритроцита составляет 120 суток. После этого в эритроцитах нарушается процесс гликолиза. В результате этого нарушается синтез АТФ и НАД-Н2, эритроцит при этом утрачивает свою форму и превращается в эхиноцит или сфероцит; нарушается проницаемость ионов Na+ и K+ через плазмолемму, что приводит к повышению осматического давления внутри эритроцита. Повышение осмотического давления усиливает поступление воды внутрь эритроцита, который при этом набухает, плазмолемма разрывается, и гемоглобин выходит в плазму крови (гемолиз). Нормальные эритроциты также могут подвергнуться гемолизу, если в кровь ввести дистиллированную воду или гипотонический раствор, так как при этом снизится осмотическое давление плазмы крови. После гемолиза из эритроцита выходит гемоглобин, остается только цитолемма. Такие гемолизированные эритроциты называются тенями эритроцитов. При нарушении синтеза НАД-Н2, гемоглобин превращается в метгемоглобин. При старении эритроцитов на их поверхности снижается содержание сиаловых кислот, которые поддерживают отрицательный заряд, поэтому эритроциты могут склеиваться. В стареющих эритроцитах изменяется скелетный белок спектрин, поэтому дисковидные эритроциты утрачивают свою форму и превращаются в сфероциты. На цитолемме старых эритроцитов появляются специфические рецепторы, способные захватывать аутолитические антитела - IgG1 и IgG2. В результате этого образуются комплексы, состоящие из рецепторов и вышеуказанных антител. Эти комплексы являются признаками, по которым макрофаги узнают эти эритроциты и фагоцитируют их. Обычно гибель эритроцита происходит в селезенке. Поэтому селезенка называется кладбищем эритроцитов. Общая характеристика лейкоцитов. Количество лейкоцитов в 1 л крови здорового человека составляет 4-9х109. Повышенное количество лейкоцитов называется лейкоцитозом, пониженное - лейкопенией. Лейкоциты делятся на гранулоциты и агранулоциты. Гранулоциты характеризуются содержанием в их цитоплазме специфических гранул. Агранулоциты специфических гранул не содержат. Кровь окрашивается азур-эозином по Романовскому-Гимзе. Если при окраске крови гранулы гранулоцита окрашиваются кислыми красителями, то такой гранулоцит называется эозинофильным (ацидофильным); если основными - базофильным, если и кислыми, и основными - нейтрофильным. Все лейкоциты имеют сферическую или шаровидную форму, все они передвигаются в жидкости при помощи ложноножек, все они циркулируют в крови непродолжительный срок (несколько часов), затем через стенку капилляров переходят в соединительную ткань (строму органов), где выполняют свои функции. Все лейкоциты выполняют защитную функцию. Гранулоциты
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|