Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Гранулоциты 2 страница




В том случае, если клетка временно утрачивает способность к митотическому делению, она подвергается начальной дифференцировке. При этом дифференцированная клетка специализируется для выполнения определенной функции. После начальной дифференцировки эта клетка способна возвратиться в клеточный цикл и вступить в период G1 и после прохождения периода S и периода G2 подвергнуться митотическому делению.

Где в организме находятся клетки в периоде G-о? Такие клетки находятся в печени. Но в том случае, если печень повреждена или часть печени удалена оперативным путем, тогда все клетки, подвергшиеся начальной дифференцировке, возвращаются в клеточный цикл и за счет их деления происходит быстрое восстановление паренхимных клеток печени.

Стволовые клетки также находятся в периоде Go, но когда стволовая клетка начинает делиться, она проходит все периоды интерфазы: G1, S, G2.

Те клетки, которые окончательно утрачивают способность к митотическому делению, подвергаются сначала начальной дифференцировке и выполняют определенные функции, а затем окончательной дифференцировке. При окончательной дифференцировке клетка не может возвратиться в клеточный цикл и в конечном итоге погибает. Где в организме находятся такие клетки? Во-первых, это клетки крови. Гранулоциты крови, подвергшиеся дифференцировке функционируют в течение 8 суток, затем погибают. Эритроциты крови функционируют в течение 120 суток, потом также погибают (в селезенке). Во-вторых, это клетки эпидермиса кожи. Клетки эпидермиса подвергаются сначала начальной, потом окончательной дифференцировке, в результате которой они превращаются в роговые чешуйки, которые затем слущиваются с поверхности эпидермиса. В эпидермисе кожи клетки могут находиться в Gо периоде, G1 периоде, G2 периоде и в периоде S.

Ткани с часто делящимися клетками поражаются сильнее тканей с редко делящимися клетками, потому что ряд химических и физических факторов разрушают микротубулы веретена деления.

МИТОЗ

Митоз отличается от прямого деления или амитоза принципиально тем, что во время митоза происходит равномерное распределение хромосомного материала между дочерними клетками. Митоз делится на 4 фазы. 1-я фаза называется профазой, 2-я - метафазой, 3-я - анафазой, 4-я - телофазой.

Если в клетке имеется половинный (гпаплоидный) набор хромосом, составляющий 23 хромосомы (половые клетки), то такой набор бозначается символом 1n хромосом и 1с ДНК, если диплоидный - 2n хромосом и 2с ДНК (соматические клетки сразу после митотического деления), анеуплоидный набор хромосом - в аномальных клетках.

Профаза. Профаза делится на раннюю и позднюю. Во время ранней профазы происходит спирализация хромосом и они становятся видны в виде тонких нитей и образуют плотный клубок, т. е. образуется фигура плотного клубка. При наступлении поздней профазы хромосомы еще больше спирализуются, в результате чего закрываются гены ядрышковых организаторов хромосом. Поэтому прекращается транскрипция рРНК и образование субъединиц хромосом, и ядрышко исчезает. Одновременно с этим происходит фрагментация ядерной оболочки. Фрагменты ядерной оболочки свертываются в небольшие вакуоли. В цитоплазме уменьшается количество гранулярной ЭПС. Цистерны гранулярной ЭПС фрагментируются на более мелкие структуры. Количество рибосом на поверхности мембран ЭПС резко уменьшается. Это приводит к уменьшению синтеза белков на 75%. К этому моменту происходит удвоение клеточного центра. Образовавшиеся 2 клеточных центра начинают расходиться к полюсам. Каждый из вновь образовавшихся клеточных центров состоит из двух центриолей: материнской и дочерней. С участием клеточных центров начинает формироваться веретено деления, которое состоит из микротубул. Хромосомы продолжают спирализоваться, и в результате образуется рыхлый клубок хромосом, расположенный в цитоплазме. Таким образом, поздняя профаза характеризуется рыхлым клубком хромосом.

Метафаза. Во время метафазы становятся видимыми хроматиды материнских хромосом. Материнские хромосомы выстраиваются в плоскости экватора. Если смотреть на эти хромосомы со стороны экватора клетки, то они воспринимаются как экваториальная пластинка (lamina equatorialis). В том случае, если смотреть на эту же пластинку, но со стороны полюса, то она воспринимается как материнская звезда (mo- nastr). Во время метафазы завершается формирование веретена деления. В веретене деления видны 2 разновидности микротубул. Одни микротубулы формируются от клеточного центра, т. е. от центриоли и называются центриолярныеми микротубулами (microtubuli cenriolaris). Другие микротубулы начинают формироваться от кинетохор хромосом. Что такое кинетохоры? В области первичных перетяжек хромосом имеются так называемые кинетохоры. Эти кинетохоры обладают способностью индуцировать самосборку микротубул. Вот отсюда и начинаются микротубулы, которые растут в сторону клеточных центров. Таким образом, концы кинетохорных микротубул заходят между концами центриолярных микротубул.

Анафаза. Во время анафазы происходит одновременное отделение дочерних хромосом (хроматид), которые начинают двигаться одни к одному, другие к другому полюсу. При этом появляется двойная звезда, т. е. 2 дочерние звезды (diastr). Движение звезд осуществляется благодаря веретену деления и благодаря тому, что сами полюса клетки несколько удаляются друг от друга.

Механизм движения дочерних звезд. Это движение обеспечивается тем, что концы кинетохорных микротубул скользят вдоль концов центриолярных микротубул и тянут хроматиды дочерних звезд в сторону полюсов.

Телофаза. Во время телофазы происходит остановка движения дочерних звезд и начинают формироваться ядра. Хромосомы подвергаются деспирализации, вокруг хромосом начинает формироваться ядерная оболочка (нуклеолемма). Поскольку деспирализации подвергаются фибриллы ДНК хромосом, постольку начинается транскрипция РНК на открывшихся генах. Так как происходит деспирализация фибрилл ДНК хромосом в области ядрышковых организаторов начинают транскрибироваться рРНК в виде тонких нитей, т. е. формируется фибриллярный аппарат ядрышка. Затем к фибриллам рРНК транспортируются рибосомные белки, которые комплексируются с рРНК, в результате чего формируются субъединицы рибосом, т. е. образуется гранулярный компонент ядрышка. Это происходит уже в поздней телофазе. Цитотомия, т. е. образование перетяжки. При образовании перетяжки по экватору происходит впячивание цитолеммы. Механизм впячивания следующий. По экватору располагаются тонофиламенты, состоящие из сократительных белков. Вот эти тонофиламенты и втягивают цитолемму. Затем происходит отделение цитолеммы одной дочерней клетки от другой такой же дочерней клетки. Так в результате митоза формируются новые дочерние клетки. Дочерние клетки в 2 раза меньше по массе в сравнении с материнской. В них также меньше количество ДНК - соответствует 2с и вдвое меньше количество хромосом - соответствует 2n. Так, митотическим делением, заканчивается клеточный цикл.

Биологическое значение митоза заключается в том, что за счет деления происходит рост организма, физиологическая и репаративная регенерация клеток, тканей и органов.

ПАТОЛОГИЯ МИТОЗА. АНЕУПЛОИДНЫЕ КЛЕТКИ

Причинами патологии митоза могут служить 1) понижение температуры или во­здействие колхицином; 2) увеличение количества центросом и 3) хромосомная абберация.

Понижение температуры и воздействие колхицином вызывают распад веретена деления клетки.

Увеличение количества центросом сопровождается увеличением количества веретен деления и образованием 3 и более дочерних клеток с анеуплоидным набором хромосом.

Хромосомная абберация возникает при воздействии на ткань ультафиолетовыми или радиоактивными лучами. Во время анафазы митоза часть такой поврежденной хромосомы может отделиться от ее плеча и после телофазы окажется в одной из дочерних клеток. Этот обломок хромосомы окружен нуклеолеммой и представляет собой " микроядро". Хромосомная аберрация может проявляться в том, что сестринские хромосомы могут склеиться друг с другом. В таком случае при расхождении дочерних хромосом вторичная перетяжка одной из них будет смещаться к одному полюсу, второй - другому. В результате этого при расхождении дочерних звезд эта пара хромосом займет положение вдоль оси веретена деления. В таком случае дочерние звезды будут соединены " мостиком". Во всех случаях хромосомной аберрации содержание хромосом в ядре будет анеуплоидным.

Амитоз. Этот тип деления характеризуется тем, что сначала появляется перетяжка ядра, которая делит ядро не обязательно на абсолютно равные части, затем перетяжкой разделяется цитоплазма. При амитозе хромосомный материал ядра материнской клетки может распределяться неравномерно между дочерними клетками. Этим амитоз принци­пиально отличается от митоза.

Прямым делением разделяются клетки, которые нельзя считать нормальными. Такое деление тоже считается ненормальным.

ПОЛИПЛОИДИЯ. ЭНДОРЕПРОДУКЦИЯ

Полиплоидия - это процесс увеличения количества хромосом в ядре клетки. В результате этого процесса образуются полиплоидные клетки.

В процессе полиплоидии задействованы 2 механизма: 1) блокирование одной из фаз митоза; 2) нарушение цитотомии во время телофазы. Рассмотрим 1-й механизм, т. е. блокирование периода G-2, профазы или метафазы. При этом неразделившаяся клетка вступает в период G-1 с тетраплоидным набором хромосом (4n), потом в период S, после которого в ней будет 8с ДНК и 8n хромосом. Затем эта клетка вступает в профазу, потом в метафазу. В метафазной звезде будет 8n. Затем во время анафазы в расходящихся дочерних звездах будет по 4n хромосом. После телофазы в дочерних клетках будут тетраплоидные ядра.

2-й механизм образования полиплоидных клеток, наблюдается при нарушении цитотомии - после того, как произошла анафаза, клетка вступила в телофазу, сформировались ядра, но цитотомии материнской клетки не произошло. В каждом из 2 ядер неразделившейся клетки содержится по 2n и 2с. Когда эта клетка вступит в период G1, затем в период S, то в его конце в каждом ядре неразделившейся клетки окажется по 4n и 4с. Потом эта клетка вступает в профазу, затем в метафазу. В формирующуюся материнскую звезду от каждого ядра поступит по 4n хромосом, т. е. в материнской звезде будет 8п. При расхождении дочерних звезд во время анафазы в каждой такой звезде будет по 4n хромосом. После телофазы в каждой дочерней клетке будет тетраплоидное ядро, т. е. в каждом ядре будет содержаться по 4n хромосом.

В каких органах имеются полипдоидные клетки? В клетках печени - гепатоцитах, мегакариоцитах красного костного мозга, в гландулоцитах ацинусов слюнных желез, поджелудочной железы, в пигментном слое сетчатки глаза. При этом ядро может содержать 4n, 8n, 16n, 32n. Резко выраженная полиплоидия особенно характерна для мегакариоцитов красного костного мозга.

Эндорепродукция - это последовательное многократное удвоение ДНК в результате чего увеличивается набор хромосом, при этом хромосомы связаны тонкими нитями. Эти структуры называются политенами, характеными для клеток плаценты.

МЕЙОЗ

Мейоз - это такое деление, при котором в дочерних клетках оказывается половинный (гаплоидный) набор хромосом - 1n и 1с. Такое деление имеет место в процессе образования половых клеток.

Рассмотрим процесс образования половых клеток в мужском организме, на­зываемый сперматогенезом. Сперматогенез включает 4 периода: 1) период размножения; 2) период роста, или период профазы; 3) период созревания, который состоит из двух стадий: 1-го деления созревания и 2-го деления созревания и 4) периода формирования. (этот период мы рассматривать не будем).

Период размножения. Размножающиеся (делящиеся) клетки в периоде размножения называются сперматогониями. Сперматогонии при делении претерпевают все фазы, характерные для митотического деления, т. е. после деления материнской (стволовой) сперматогонии образуются 2 дочерних сперматогонии с набором хромосом 2n и набором ДНК 2с, затем эти сперматогонии проходят весь клеточный цикл и к предстоящему новому делению у них будет 4n и 4с. Вот эти сперматогонии - с 4n и 4с - вступают во 2-й период сперматогенеза - период роста, или период профазы 1-го деле­ния мейоза. С этого момента клетки называются сперматоцитами 1-го порядка.

Период роста. В процессе развития сперматоцитов 1-го порядка имеют место 5 фаз: лептотена, зиготена (синаптена), пахитена, диплотена и диакинез.

Лептотена характеризуется активной спирализацией хромосом ядра, которые становятся видимыми, напоминающими тонкие нити. Затем наступает зиготена (синаптена). Во время зиготены гомологичные хромосомы приближаются друг к другу и соединяются вместе, образуя бивалент. В каждом биваленте образуются 2 центральные хроматиды (прилежат друг к другу) и 2 периферические. Затем плечи центральных хроматид начинают перекрещиваться и обмениваться генами (кросенговер). После завершения обмена генами каждая из 4 хроматид бивалента отличается друг от друга по составу генетического материала, т. е. каждая из хромосом бивалента состоит не из сестринских ( 2-х генетически одинаковых), а из совершенно разных хроматид, одновременно с этим бивалент - из генетически разных 4-х хроматид. Поэтому материнские хромосомы принято называть диадами, бывшие сестринские хроматиды, входящие в их состав - монадами, а весь бивалент - тетрадой. После зиготены начинается пахитена, в результате которой диады (бывшие материнские хромосомы бивалента) еще больше спирализуются, укорачиваются и утолщаются. Между монадами появляется заметная щель. После этого наступает диплотена, во время которой диады начинают удаляться друг от друга, но все еще близко прилежат друг к другу. Потом наступает диакинез, во время которого происходит дальнейшая спирализация монад каждой из 23 тетрад.

Таким образом, в ядре сперматоцита 1-го порядка в конце профазы содержится 23 тетрады, или 46 диад, или 92 монады. Затем клетка вступает в 1-е деление созревания.

Период созревания. 1-е деление созревания начинается с метафазы. В метафазе в материнской звезде будет 23 тетрады. Тетрады выстраиваются в плоскости экватора таким образом, что одна половинка тетрады обращена к одному полюсу клетки, вторая - к другому. Во время анафазы, половинки тетрад, называемые диадами, расходятся к полюсам. Затем в результате телофазы из сперматоцита 1-го порядка образуются 2 новых клетки, называемые сперматоцитами 2-го порядка. В каждом сперматоците 2­го порядка будет по 23 диады или 46 монад (2n). Сперматоциты 2-го порядка, минуя период S, период G2 и профазу, сразу вступают в метафазу 2-го деления созревания. В материнской звезде сперматоцита 2-го порядка будет 23 диады, котрые выстраиваются в плоскости экватора таким образом, что одна половинка диады обращена к одному, вторая - к другому полюсу. Эти половинки называются монадами. Во время анафазы, дочерние звезды, состоящие из монад, расходятся к полюсам. Во время телофазы 2-го деления созревания образуются 2 новые клетки, называемые сперматидами. В сперматидах будет гаплоидный набор хромосом (1n).

Строение митотических хромосом . Митотические хромосомы появляются в период митоза. Они особенно хорошо видны во время метафазы и анафазы. Во время метафазы видно, что каждая материнская хромосома состоит из двух сестринских хромосом, или хроматид. Каждая хромосома состоит из одной молекулы ДНК, которая уложена особым образом и приобретает характерную форму. В каждой хромосоме есть первичная перетяжка, или центромер. Участки хромосомы, отходящие от первичной перетяжки, называются плечами хромосомы. Если плечи хромосомы имеют одинаковую или примерно одинаковую длину, то такая хромосома называются метоцентрической; если плечи хромосом явно неодинаковой длины, то такая хромосома называется субметоцентрической; если одно плечо явно многократно длиннее другого, то такая хромосома называется акроцентрической. Концы плеч хромосом называются теломерами. Кроме первичной перетяжки в некоторых хромосомах есть вторичные пе­ретяжки. Вторичная перетяжка - это ядрышковый организатор. Участок плеча хромосомы между вторичной перетяжкой и теломером, называется спутником (сателлитом). Набор хромосом в ядре человека составляет кариотип. Чем характеризуется кариотип? Кариотип характеризуется количеством, размерами и особенностями строения хромосм.

Все хромосомы ядра человека разделяются на 7 групп, которые обозначаются буквами латинского алфавита от A до G. В каждой группе хромосомы морфологически похожи друг на друга, но хромосомы разных групп отличаются. Чтобы различить хромосомы друг от друга в одной группе применяется метод дифференцированного окрашивания. При дифференцированном окрашивании на плечах хромосом появляются светлые и темные полосы. Причем рисунок, образованный этими полосами, для каждой хромосомы индивидуален как отпечатки пальцев человека. Поэтому благодаря дифференцированному окрашиванию можно отличить хромосомы друг от друга.

РЕАКЦИЯ КЛЕТКИ НА ВНЕШНИЕ ВОЗДЕЙСТВИЯ

При воздействии неблагоприятных внешних химических, физических и биологических факторов на клетку, в ней возникают структурные и функциональные нарушения. В зависимости от интенсивности, продолжительности и характера воздействия такая клетка может либо адаптироваться к новым условиям и возвратиться в исходное состояние, либо погибнуть.

Изменения в цитоплазме поврежденной клетки. Цитоплазма утрачивает способность к гранулообразованию. В нормальной клетке частицы краски, поступившие в ее цитоплазму, заключаются в гранулы. Цитоплазма и кариоплазма при этом остаются светлыми. При утрате способности к гранулообразованию гранулы не образуются, а цитоплазма и кариоплазма диффузно окрашиваются.

Изменения в ядре. В ядре начинается отек перинуклеарного пространства, его расширение. Хроматин конденсируется в грубые глыбки, коагулируется. Это называется пикнозом. Нарушается регуляция белкового синтеза. В дальнейшем ядро разрывается на фрагменты. Это называется кариорексисом. В конечном итоге ядро подвергается лизису - кариолизис.

Изменения митохондрий. На начальном этапе митохондрии сжимаются, затем набухают, округляются, их кристы укорачиваются и редуцируются, снижается синтез АТФ. В конечном итоге мембраны митохондрий разрываются, матрикс смешивается с гиалоплазмой.

Изменения ЭПС. Цистерны гранулярной ЭПС фрагментируются и распадаются на вакуоли. Количество рибосом на поверхности мембран уменьшается, синтез белка снижается.

Изменения комплекса Гольджи. Комплекс Гольджи может подвергнуться распаду в результате фрагментации его цистерн.

Изменения лизосом. Количество первичных лизосом и автофагосом возрастает. Мембраны первичных лизосом разрываются. Выделившиеся из них ферменты осуществляют самопериваривание (лизис) клетки.

В результате нарушения проницаемости клеточных мембран, структуры и функции органелл нарушается метаболизм клетки, что может сопровождаться накоплением в цитоплазме липидов (жировая дистрофия), гликогена (углеводная дистрофия) и белков (белковая дистрофия).

При слабой интенсивности и кратковременном воздействии повреждающих факторов цитофизиологические изменения клетки могут быть обратимыми. При этом в одних случаях структура и функция клетки полностью восстанавливаются. Такая клетка продолжает нормально функционировать. В других случаях цитофизиология клетки восстанавливается неполностью. После этого клетка в течение некоторого времени про­должает функционировать, но вскоре погибает без видимых причин.

Злокачественное перерождение клетки. В некоторых случаях в клетке нарушаются регуляторные процессы. Это может привести к нарушению ее дифференцировки, в основе которой лежат изменения в генах ДНК хромосом. В результате этого клетка приобретает относительную автономию, способность к безудержному делению, метастазированию. Вновь образовавшиеся дочерние клетки унаследуют вышеуказанные свойства. Опухоль начинает быстро расти.

НЕКРОЗ И АПОПТОЗ КЛЕТКИ

Некроз клетки происходит в процессе ее незапрограммированной гибели и наблюдается после ее повреждения. При этом нарушается проницаемость клеточных мембран, расширяются компартменты, повреждается структура и нарушается функция ЭПС, комплекса Гольджи, митохондрий, увеличивается количество аутофагосом и в конечном итоге все завершается лизисом клетки.

Апоптоз клетки - это запрогаммированная гибель клетки. Такая гибель клетки связана с тем, что в ДНК хромосом имеются гены, в которых закодирована программа гибели клетки. Эта программа запускается в двух случаях: 1) при воздействии на клетку некоторых белков или гормонов; 2) если на клетку не поступают регулирующие сигналы.

При воздействи на клетку некоторых белков или гормонов в ее цитоплазме синтезируется сигнальная молекула (цАМФ или кальмодулин), котрая запускает программу гибели клетки. Пример: глюкокортикоиды коры надпочечников при их повышенном содержании в крови захватываются рецепторами наружной мембраны кариолеммы лимфоцита и через сигнальную молекулу запускают программу саморазрушения клетки.

При отсутствии регулирующих функцию клетки сигналов тоже синтезируется сигнальная молекула, которая активирует ген, содержащий программу гибели клетки. Примеры: 1) в семеннике вырабатываются сигналы, регулирующие функции клеток предстательной железы; если кастрировать самца, то прекращается поступление регулирующих сигналов, что сопровождается саморазрушением клеток предстательной железы; 2) в гипофизе вырабатываются гормоны, регулирующие развитие и функцию желтого тела яичников; когда же прекращается выделение этих гормонов из гипофиза, начинается саморазрушение клеток желтого тела, в результате чего оно полностью исчезает.

Характер изменений в клетке при апоптозе. После активации генов саморазрушения клетки начинается разделение ДНК хромосом на нуклеосомные фрагменты. Хроматин ядра конденсируется, образуются грубые глыбки хроматина, прилежащие к нуклеолемме. Ядро распадается на фрагменты - микроядра. Каждое такое ядро окружено нуклеолеммой. Вместе с этим фрагментируется и цитоплазма с последующим образованием микроклеток - апоптических телец, в состав которых входят микроядра. Апоптические тельца затем фагоцитируются макрофагами или подвергаются лизису.

Лекция 3

СРАВНИТЕЛЬНАЯ ЭМБРИОЛОГИЯ

Эмбриология - это учение о развитии зародыша. Эмбриогенез является частью онтогенеза. Онтогенез складывается из прогенеза, т. е. развития половых клеток, эмбриогенеза и постнатального периода, который начинается рождением и заканчивается смертью.

В процессе эмбриогенеза выделяют следующие стадии: зигота, которой предшествует оплодотворение; бластула, образующаяся в результате дробления; гаструла, формирующаяся в результпте гаструляции; нейрула, возникшая после нейруляции; затем наступает гистогенез, органогенез и системогенез.

Прогенез. Сперматозоиды (spermatozoon). Их форма вытянутая, длина - до 70 мкм. Сперматозоиды состоят из головки и хвоста. В состав головки входит ядро уплощенной формы, покрытое тонким слоем цитоплазмы. Кариолемма ядра лишена ядерных пор. Передняя половина ядра покрыта чехликом, т. е. акробластом. В центре акробласта находится акросома, в акросоме - ферменты гиалуронидаза, трипсин, проте­азы, фосфатазы и др.

На цитолемме сперматозоида имеются андрогамоны: андрогамон I и андрогамон II. Андрогамон I - это химическое вещество, при выделении которого прекращается движение сперматозоида, т. е. это как бы тормоз сперматозоида. Андрогамон II - это химическое вещество, которое при соединении с гиногамоном II женской яйцеклетки вызывает склеивание сперматозоидов и наступление их гибели, т. е. это как бы орудие самоубийства сперматозоида.

Хвост сперматозоида состоит из 4 отделов: связующего отдела, или шейки; промежуточного отдела; главного отдела; терминального, или конечный отдела. Шейка располагается между проксимальной центриолью и проксимальным кольцом дистальной центриоли. Промежуточный отдел расположен между двумя кольцами дистальной центриоли. Здесь сконцентрированы митохондрии, расположенные по спирали. За счет митохондрий накапливается энергия, используемая для движения жгутика и перемещения сперматозойда в жидкости. Главный отдел отходит от про­межуточного отдела. Он покрыт тонкой волокнистой оболочкой и без резкой границы переходит в конечный, или терминальный отдел. В основе жгутика имеется осевая нить, включающая 9 пар периферических и 1 пару центральных микротрубочек. Осевая нить начинается от проксимального кольца дистальной центриоли.

Сперматозоиды подвижны. Благодаря колебаниям жгутика сперматозоиды перемещаются в жидкости со скоростью около 3 мм в минуту или 50 мкм в секунду. В ядре сперматозоида содержится гаплоидный набор хромосом: 22 аутосомы и 1 половая либо Х-, либо Y-хромосома. Х-хромосома более массивная. Поэтому, сперматозоиды, несущие Х-хромосому менее подвижны. Количество сперматозоидов с Х- и Y- хромосомами примерно одинаково. При оплодотворении яйцеклетки сперматозоидом, содержащим Y-хромосому, зарождается плод мужского пола, Х-хромосому - женского пола.

Женская половая клетка (ovocytus). Женские половые клетки отличаются тем, что в их цитоплазме содержится значительное количество желтка (lecytos). В зависимости от количества желтка яйцеклетки подразделяются на безжелтковые, или алецитальные; маложелтковые. или олиголецитальные; многожелтковые, или полилецитальные. В зависимости от распределения желтка в цитоплазме, яйцеклетки подразделяются на изолецитальные, если желток распределен в цитоплазме равномерно. Эти яйцеклетки, в свою очередь, подразделяются на первично изолецитальные (ланцетник) и вторично изолецитальные (млекопитающие); телолецитальные, если желток сконцентрирован на вегетативном полюсе. Среди этих яйцеклеток выделяют 2 разновидеости: ме- золецитальные, т. е. умеренно телолецитальные (амфибии), и резко телолецитальные (птицы, рептилии, акуловые рыбы); центролецитальныые, если желток сконцентрирован в центре клетки.

Яйцеклетки покрыты несколькими оболочками. В яйцеклетке птиц имеются цитолемма, или оволемма, белочная (попросту белок), подскорлуповая и скорлуповая. В яйцеклетке млекопитающих 3 оболочки: цитолемма, блестящая зона и лучистый венец. Ядерно-цитоплазматическое отношение яйцеклетки незначительное, так как масса ядра очень мала по сравнению с массой цитоплазмы.

В ядре яйцеклетки содержатся 23 хромосомы, из них 22 аутосомы и 1 половая Х- хромосома.

В ядре яйцеклетки осуществляется процесс амплификации. Что такое амплификация? Это снятие копий генов РНК с поверхности участков ДНК. Копиии генов каких РНК копируются при амплификации? Информационных, транспортных и рибосомных. С этих копий снимаются новые копии. В конечном итоге эти копии свертываются в кольца и выходят из ядра и хранятся до момента оплодотворения. Часто копии генов РНК блокируются белками и называются информосомами. Таким образом в яйцеклетках создается очень мощный трансляционный аппарат.

В цитоплазме яйцеклетки отсутствует клеточный центр, так как он утрачивается в ходе 1-го деления созревания. В то же время хорошо развиты митохондрии, ЭПС. Что касается комплекса Гольджи, то он распадается на кортикальные гранулы, которые рас­полагаются по периферии яйцеклетки под оволеммой. В этих гранулах содержатся протеолитические ферменты.

Яйцеклетка содержит гиногамоны: гиногамон I и гиногамон II. Гиногамон 1 - это вещество, которое вызывает положительный хемотаксис у сперматозоидов. Гиногамон II - это вещество, убивающее сперматозоид. В тот момент, когда яйцеклетка выделяет этот гиногамон, последний соединяется а сндрогамоном II, в результате чего сперматозоид обездвиживается и погибает.

В яйцеклетке имеются кальциевые депо. Они представляют собой скопления ионов кальция в цистернах гладкой ЭПС. Желток представлен в яйцеклетке в виде желточных шаров, гранул и желточных пластинок. Желток представляет собой питательное веще­ство, которого яйцеклетке человека хватает на 24 часа автономного существования. Если в течение этого времени яйцеклетка не будет оплодотворена, то она погибает.

Яйцеклетка неподвижна. Она передвигается благодаря мускульным сокращениям яйцеводов, мерцаниям ресничек эпителя, выстилающего слизистую оболочку яйцеводов. Количество яйцеклеток также мало по сравнению с количеством сперматозоидами. Так, например, в течение месяца у женщины созревает всего лишь 1 яйцеклетка.

Оплодотворение (fertilisatio). Это слияние женской и мужской половых клкток, в результате чего восстанавливается диплоидный набор хромосом и образуется качественно новая клетка - зигота.

С момента оплодотворения и начинается собственно эмбриогенез. В эмбриогенезе различают стадии и процессы. Каждой стадии соответствует определенный процесс. Так, например, стадии зиготы предшествует процесс оплодотворения, стадии бластулы - дробление, стадии гаструлы - гаструляция, а стадии нейрулы - нейруляция. Затем наступает гистогенез, органогенез (развитие органов) и системогенез (развитие системы органов).

Процесс оплодотворения складывается из: 1) дистантного взаимодействия; 2) контактного взаимодействия; 3) проникновения сперматозоида в цитоплазму яйцеклетки - пенетрации (penetratio).

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...