Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Модули коры головного мозга 3 страница




Наружные волосковые клетки (epitheliocytus pilosus sensorius externum) располагаются в 3-5 рядов. Их количество количество 12000-20000. Они имеют призматическую форму, их основания лежат на наружных поддерживающих (фаланговых) клетках. Круглые ядра располагаются в средней части клеток. В цитоплазме имеются рибосомы, ЭПС, митохондрии. Апикальная поверхность клеток покрыта кутикулой, от которой отходят неподвижные реснички (волоски), располагающиеся в виде буквы V. На цитолемме волосков имеются холинорецепторные белки и фермент ацетилхолинэстераза. В волосках есть сократительные актиновые и миозиновые филаменты, благодаря которым волоски выпрямляются, после их соприкосновения с покровной мембраной.

Внутренние поддерживающие (фаланговые) клетки имеют призматическую форму, своим основанием лежат на базальной мембране, на их апикальной поверхности имеется вырезка (вдавление), в которой располагаются основания внутренних волосковых (сенсорных) клеток. В цитоплазме внутренних фаланговых клеток имеются общие органеллы, тонофиламенты, круглое ядро располагается в их центре.

От апикальной поверхности внутренних фаланговых клеток отходит лентовидный отросток (фаланга), который отделяет внутренние волосковые клетки друг от друга.

Наружные поддерживающие клетки (epitheliocytus sustentans externum) подразделяются на фаланговые (клетки Дейтерса), наружные пограничные (клетки Гензена) и наружные поддерживающие (клетки Клаудиуса).

Наружные фаланговые клетки (epitheliocytus phalangeus externum) имеют призматическую форму, своим базальным концом лежат на базальной мембране, на апикальной поверхности имеется вырезка, в которой располагается основание наружной волосковой клетки, их круглые ядра находятся в центральной части клетки. В цитоплазме содержатся органеллы общего значения, тонофиламенты. От апикальной поверхности отходит длинный отросток (фаланга), отделяющий наружные волосковые клетки друг от друга.

Наружные пограничные поддерживающие клетки (sustentocytus limitans externum) имеют призматическую форму, своим базальным концом лежат на базальной мембране. Эти клетки короче наружных фаланговых. На их апикальной поверхности имеются микроворсинки. Ядра располагаются в центральной части клеток. В цитоплазме кроме органелл общего значения имеются тонофиламенты и включения гликогена, что свиде­тельствует об их трофической функции.

Наружные поддерживающие клетки (sustentocytus externum) имеют кубическую форму и переходят в сосудистую полоску.

Столбовые внутренние и наружные клетки (epitheliocytus pilaris internum et externum) ограничивают внутренний туннель. Своим широким основанием они лежат на базальной мембране. В их базальном конце располагаются круглые ядра, апикальные концы внутренних столбовых клеток соединяются с апикальыми концами наружных, в результате чего образуется внутренний туннель треугольной формы.

Покровная мембрана (membrana tectoria) представляет собой сое­динительнотканную пластинку, состоящую из радиально направленных коллагеновых волокон, погруженных в аморфный матрикс. Внутренний край покровной мембраны прикрепляется к спиральному гребешку, наружный - свободный нависает (плавает в эндолимфе) над спиральным органом на всем его протяжении (3, 5 см). При колебании спирального органа волоски (стереоцилли) волосковых клеток прикасаются к покровной мембране, что способствует возникновению звукового импульса.

Путь звуковой волны до волосковых клеток и звукового импульса до коркового конца слухового анализатора. Звуковая волна через наружный слуховой проход достигает барабанной перепонки и приводит её в движение. Колебательные движения от барабанной перепонки через систему косточек передаются на овальное окно —> перилимфу вестибулярной лестницы -> к вершине улитки, где имеется переход от вестибулярной лестницы в барабанную лестницу (helicatrema) —> перилимфу ба­рабанной лестницы.

Над барабанной лестницей натянута спиральная мембрана, которая тоже подвергается колебательным движениям. Если звук высокий, спиральная мембрана колеблется у основания улитки, низкий - у её вершины. Вместе со спиральной мембраной колеблется спиральный орган и его волосковые клетки.

Во время колебательных движений холинорецепторы стереоцилий захватывают ацетилхолин, находящийся в эндолимфе перепочатого канала. Это приводит к изменению проницаемости цитолеммы волосковых клеток, и возникает слуховой импульс. В это время ацетилхолинэстераза разрушает захваченный рецепторами ацетилхолин.

Возникший слуховой импульс от волосковой (сенсоэпителиальной) клетки через синапс передается на дендрит вторично чувствующей нервной клетки, тело которой находится в спиральном ганглии. Аксоны биполярных нейронов спирального ганглия идут в 2 направлениях: часть - к задним (дорсальным) вестибулокохлеарным ядрам, часть - к передним (вентральным) вестибулокохлеарным ядрам.

Вестибулокохлеарные ядра совмещают в себе два ядра: вестибулярное и кохлеарное (слуховое). В слуховых, или кохлеарных, ядрах заложены вторые нейроны слухового пути. В том случае, если аксон биполярного нейрона (1-го нейрона слухового пути) спирального ганглия поступает к передним слуховым ядрам, то слуховой импульс по аксону нейрона (2-го нейрона слухового пути) направляется к третьему нейрону слухового пути, заложенному в ядрах верхних олив и ядрах трапецевидного тела. Аксоны третьих нейронов переходят на противоположную сторону (справа налево, слева направо) и вступают в боковую петлю, в составе которой несут импульс к медиальным коленчатым телам и нижним буграм четверохолмия, где заложены 4-е нейроны. Аксоны 4-х нейронов направляются в височную извилину, где находится корковый конец слухового анализатора.

В том случае, если аксон 1-го нейрона поступает к задним слуховым ядрам продолговатого мозга, где заложен 2-й нейрон, то аксон 2-го нейрона направляется в боковую петлю, в составе которой несет импульс к 3-му нейрону, заложенному в ядре боковой петли. Аксон 3-го нейрона в составе этой же боковой петли несет импульс к медиальным коленчатым телам и нижним буграм чеверохолмия, откуда по аксонам четвертых нейронов направляется в височную извилину коры головного мозга.

Вестибулярный аппарат представлен круглым мешочком (sacculus), эллиптическим мешочком, или маточкой (utriculus) и тремя полукружными каналами, расположенными в трех взаимно перпендикулярных плоскостях. В том месте, где полукружные каналы присоединяются к маточке, эти каналы расширяются. Расширения называются ампулами. В маточке и круглом мешочке располагаются чувствительные пятна (macula), в ампулах полукружных каналов - ампулярные гребешки (crista ampularis).

Между маточкой и круглым мешочком имеется проток (ductus utriculo-saccularis), от которого отходит эндолимфатический проток (ductus endolimfaticus), заканчивающийся утолщением, прилежащим к твердой мозговой оболочке. Поэтому при воспалении внутреннего уха может быть поражена и твердая мозговая оболочка.

Чувствительные пятна маточки и круглого мешочка. Маточка и мешочек выстланы однослойным плоским эпителием. В области пятна эпителий приобретает кубическую и призматическую форму. Клетки пятна лежат на базальной мембране. Среди них различают поддерживающие (sustentocytus) и волосковые, или сенсоэпителиальные (epitheliocytus sensorius pilosus). На поверхности пятна лежит толстая отолитовая мембрана (membrana statoconiorum), состоящая из желеобразного вещества, в состав которого входят кристаллы карбоната кальция. Волосковые клетки делятся на клетки I и клетки II типа.

Клетки I типа располагаются между поддерживающими клетками, имеют грушевидную форму, в их базальном конце располагается круглое ядро, в цитоплазме содержатся митохондрии, ЭПС, рибосомы. К базальному концу подходят многочисленные нервные волокна, которые оплетают клетку в виде чаши. От апикального конца клеток отходят до 80 волосков, длиной около 40 мкм. Один из этих волосков подвижный (кинцилия), остальные неподвижные (стереоцилии). Подвижный волосок не может располагаться между стереоцилиями. Он всегда располагается полярно по отношению к стереоцилиям. Киноцилии и стереоцилии внедряются в отолитовую мембрану.

Клетки II типа имеют цилиндрическую форму, к их базальным концам подходят немногочисленные нервные волокна, которые образуют на этих клетках точечные синапсы. Внутренняя структура клеток II типа сходна со структурой клеток I типа.

Сустентоциты пятен лежат на базальной мембране и выполняют под­держивающую и трофическую функции.

Функции чувствительных пятен маточки и круглого мешочка: 1) воспринимают изменения линейного ускорения; 2) гравитацию (положение тела в пространстве); 3) пятно маточки воспринимает еще и вибрационные колебания.

Механизм восприятия линейного ускорения и гравитации. В восприятии ускорения и гравитации принимает участие отолитовая мембрана. При изменении линейного ускорения (остановке движения) отолитовая мембрана ввиду своей массивности и инертности продолжает движение, и некоторое время остается на месте при его повышении, т. е. она смещается на несколько мкм в одну или другую сторону. При смещении мембраны наклоняются волоски сенсорных клеток. Если стереоцилии наклоняются в сторону киноцилии, то в клетке возникает возбуждение, если от киноцилии - торможение.

Волосковые (сенсорные) клетки в пятне располагаются группами таким образом, что при смещении отолитовой мембраны в любую сторону, в одних клетках возникает возбуждение, в других - торможение.

Гравитация воспринимается точно также. При наклоне головы или тела вместе с головой отолитовая мембрана пятна в виду свой массы смещается вниз (к центру тяжести земли) и вызывает наклон волосков.

Ампулярные гребешки (crista ampularis). Располагаются в ампулах полукружных каналов. Перепончатые полукружные каналы и их ампулы выстланы однослойным плоским эпителием, который в области гребешка приобретает призматическую форму. Гребешки в ампулах расположены в виде складок, покрытых призматическим эпителием. Эпителиоциты гребешков подразделяются на поддерживающие и волосковые клетки I и II типов (цилиндрические и грушевидные). Реснички волосковых (сенсорных) клеток внедряются в желотинозный купол, покрывающий гребешки. Высота купола достигает 1 мм.

Функция ампулярных гребешков: воспринимают изменение углового ускорения. При изменении углового ускорения (замедление, ускорение, прекращение вращения) происходит отклонение купола в одну или другую сторону. В результате этого наклоняются волоски и в одних сенсорных клетках возникают тормозные, в других - возбуждающие импульсы, которые передаются на скелетную и глазодвигательную мускулатуру.

Пути нервных импульсов от вестибулярного аппарата. От сенсорной (волосковой) клетки через синапс импульс передается на дендрит вторично чувствующего нейрона, заложенного в вестибулярном нервном ганглии (1-й нейрон). Аксоны некоторых первых нейронов проходят транзитно через вестибулярные ядра продолговатого мозга и направляются к мозжечку. Большая часть аксонов первых нейронов направляются к вестибулярным ядрам и заканчиваются синапсами на их нейронах (2-й нейрон). Аксоны 2-х нейронов направляются в кору головного мозга, где находится центральный конец анализатора. Одновременно с этим аксоны этих нейронов направляются в спинной мозг (tractus vestibulospinalis), мозжечок (tractus vestibulocerebellaris) в виде лазящих волокон, ретикулярную формацию (tractus vestibuloreticularis) и к другим центрам головного мозга.

Кроме афферентных волокон (дендритов вторично чувствующих нейронов спирального и вестибулярного ганглиев), к спиральному органу и к пятнам и гребешкам вестибулярного аппарата подходят эфферентные нервные волокна, являющиеся аксонами нейронов ядра нижних олив продолговатого мозга. В совокупности афферентные и эфферентные нервные волокна образуют нервные сплетения у основания наружных волосковых клеток спирального органа (наружное спиральное нервное сплетение), у основания внутренних волосковых клеток (внутреннее спиральное нервное сплетение).

Следует отметить, что к наружным волосковым клеткам подходят преимущественно эфферентные нервные волокна, к внутренним - афферентные. Точно также, афферентные и эфферентные нервные волокна образуют нервные сплетения в пятнах круглого мешочка и маточки и в ампулярных гребешках.

Кровоснабжение внутреннего уха осуществляется ветвью верхней мозговой артерии, которя делится на кохлеарную и вестибулярную.

Вестибулярная артерия кровоснабжает вестибулярный аппарат (пятна маточки и круглого мешочка, полукружные каналы и гребешки).

Кохлеарная (улитковая) артерия снабжает кровью спиральный ганглий и внутреннюю часть спиральной мембраны.

Отток венозной крови от внутреннего уха осуществляется через венозное сплетение улитки, венозное сплетение маточки и круглого мешочка и венозное сплетение полукружных каналов. В спиральном органе сосудов нет. Лимфатические сосуды во внутреннем ухе отсутствуют.

Возрастные изменения в пожилом возрасте характеризуются окостенением в области прикрепления стремечка к связке овального окна, гибелью части волосковых клеток спирального органа, воспринимающих звуковые колебания и преобразующие их в нервный импульс, что приводит к снижению слуха. Окостенеие в области связки овального окна, обусловливающее тугоподвижность стремечка, можно корригировать при помощи слухового аппарата. Разрушение сенсорных клеток спирального органа или поражение слухопроводящих путей коррекции не поддается.

ОРГАН ВКУСА

Орган вкуса представлен вкусовыми почками (caliculus gustatorius), расположенными в толще многослойного плоского эпителия грибовидных, желобоватых, а у детей еще и листовидных сосочков языка. В порядке исключения вкусовые почки могут локализоваться в эпителии губ, небных дужек, надгортанника. В общей сложности вкусовой аппарат включает около 2000 вкусовых почек.

Развитие вкусовых почек в эмбриональном периоде начинается с того, что к эпителию сосочков языка подходят терминали блуждающего, лицевого и языкоглоточного нервов. Под индуцирующим влиянием этих терминалей начинается дифферецировка эпителиальных клеток во вкусовые, поддерживающие и базальные клетки вкусовых почек.

Вкусовая почка имеет эллипсоидную форму. Вход в почку открывается вкусовой порой (pora gustatoria), которая заканчивается вкусовой ямкой (fovea gustatoria). На дне вкусовой ямки находится электроноплотная масса, включающая значительное количество фосфатаз, рецепторных белков и мукопротеидов. Эта масса является адсорбентом, где адсорбируются вкусовые вещества.

В состав вкусовой почки входит около 50 клеток, включающих 5 разновидностей: 1) вкусовые светлые узкие, 2) вкусовые светлые призматические, 3) темные поддерживающие, 4) базальные и 5) периферические, или перигемальные (gemma - почка).

Вкусовые клетки узкие и призматические (epitheliocytus gustatorius), или сенсоэпителиальные (сенсорные) клетки имеют вытянутую форму, их базальный конец лежит на базальной мембране, отделяющей почку от соединительной ткани. На апикальном конце клеток имеются микроворсинки, в цитолемму которых вмонтированы рецепторные белки. Рецепторные белки на кончике языка воспринимают сладкое, ближе к корню - горькое. Ядра вкусовых клеток имеют овальную форму, в цитоплазме содержатся митохондрии, гладкая ЭПС. К вкусовым клеткам подходят нервные волокна, заканчивающиеся на них синапсами.

Поддерживающие темные клетки (sustentocytus) имеют вытянутую форму, овальное ядро, расположенное в центральной части клетки, комплекс Гольджи, митохондрии, гранулярную и гладкую ЭПС. Их базальный конец лежит на базальной мембране. Функции: изолируют вкусовые клетки друг от друга, участвуют в секреции гликопротеидов.

Базальные эпителиоциты (epitheliocytus basalis) корткие, имеют коническую форму, широким концом лежат на базальной мембране, обладают способностью к митотическому делению. Функция: регенераторная - за их счет происходит обновление эпителиоцитов вкусовой почки в течение 10 суток.

Периферические, или перигемальные, клетки (epitheliocytus perigemalis) располагаются по периферии вкусовой почки, имеют серповидную форму. Предположительная функция: отделяют клетки вкусовой почки от многослойного эпителия сосочков языка.

Восприятие вкусового раздражения и путь вкусового импульса. Ре- цепторные белки захватывают молекулы вкусовых веществ, что приводит к изменеию проницаемости цитолеммы клетки и возникновению импульса, который передается через синапс на дендрит нейрона, заложенного в ганглии блуждающего, языкоглоточного или лицевого нерва (1-й нейрон), аксон 1-го нейрона передает импульс на 2-й нейрон, заложенный в ядре одиночного пути, аксон которого направляется к слюнным железам, мышцам языка и мимической мускулатуре лица. Часть аксонов вторых нейронов направляется к зрительным буграм, где заложен 3-й нейрон, аксон которого направляется к 4-му нейрону, заложенному в постцент- ральной извилине коры головного мозга (корковый конец вкусового анализатора).

Лекция 14

СЕРДЕЧНО-СОСУДИСТАЯ СИСТЕМА

Эта система включает кровеносные, лимфатические сосуды и сердце. КРОВЕНОСНЫЕ СОСУДЫ

Развитие кровеносных сосудов. Кровеносные сосуды развиваются из мезенхимы в стенке желточного мешка и в ворсинках хориона. На 3-й неделе из мезенхимных клеток образуются кровяные островки. Центральные клетки этих островков дифференцируются в клетки крови, периферические клетки уплощаются и превращаются в эндотелиоциты сосудов, затем из мезенхимных же клеток развиваются все элементы стенки кровеносных сосудов. Чуть позже из мезенхимы таким же образом в теле зародыша развиваются кровеносные сосуды в виде щелевидных полостей и сосудов трубчатой формы. Позже кровеносные сосуды тела сливаются с сосудами желточного мешка и во­рсинок хориона и образуется единиая кровеносная система.

Кровеносные сосуды - это замкнутая система трубок разного калибра, выполняющая транспортную, трофическую и обменную функции и функцию регуляции микроциркуляции крови в органах и тканях.

Классификация кровеносных сосудов. Сосуды классифицируются на артерии, вены и сосуды микроциркуляторного русла, которые включают артериолы, капилляры, венулы и артериоловенулярные анастомозы (АВА).

По артериям кровь течет от сердца, по венам - к сердцу. По артериям течет артериальная кровь, за исключением легочной и пупочной артерий; по венам - венозная кровь, за исключением легочной и пупочной вен.

В стенках артерий и вен имеются 3 оболочки: 1) внутренняя (tunuca interna); 2) средняя (tunica media) и 3) наружная (адвентиция) - tunica externa (tunica adventitia).

Артерии классифицируются на 3 типа: 1) артерии эластического типа (аорта и легочная артерия); 2) артерии смешанного типа (подключичная и сонная); 3) артерии мышечного типа (все остальные артерии среднего и мелкого калибра).

Артерии эластического типа (arteria elastotipica). Внутренняя оболочка аорты состоит из 3 слоев: эндотелия, субэндотелия и сплетения эластических волокон.

Слой эндотелия представлен уплощенными клетками полигональной формы, содержащими одно, иногда несколько ядер овальной формы. Их цитоплазма бедна органеллами общего значения кроме митохондрий. В цитолемме имеются кавеолы, в цитоплазме - пиноцитозные пузырьки, на люминальной поверхности эндотелиоцитов - микроворсинки, увеличивающие поверхность клеток. Длина эндотелиоцитов достигает 500 мкм, ширина - 140 мкм.

Субэндотелий составляет около 15% от толщины стенки аорты, представлен рыхлой соединительной тканью, включающей тонкие коллагеновые и эластические волокна, фибробласты, звездчатые малодифференцированые клетки, гладкие миоциты, основное межклеточное вещество, содержащее сульфатированные гликозаминогликаны, в пожилом возрасте появляется холестерин и жирные кислоты.

Сплетение эластических волокон (plexus fibroelasticus) представлено переплетением продольно и циркулярно расположенных эластических волокон.

Средняя оболочка аорты представлена 50-70 окончатыми эластическими мембранами (membrana elastica fenestrata), между которыми имеются отдельные гладкие миоциты, тонкие коллагеновые и эластические волокна.

Наружная оболочка состоит из рыхлой соединительной ткани, в которой имеются коллагеновые волокна, фибробласты, макрофаги, тучные клетки, адипоциты, кровеносные сосуды (vasa vasorum) и нервы (nervi vasorum).

Функции аорты: 1) транспортная; 2) благодаря своей эластичности аорта расширяется во время систолы, затем спадается во время диастолы, проталкивая кровь в дистальном направлении.

Гемодинамические условия в аорте: систолическое давление около - 120 мм ртутного столба, скорость движения крови - от 0, 5 до 1, 3 м/сек.

Артерии смешанного, или мышечно-эластического, типа (arteria mixtotypica). Данный тип представлен подключичной и сонной артериями. Эти артерии характеризуются тем, что их внутренняя оболочка состоит из трех слоев: 1) эндотелия; 2) хорошо выраженного субэндотелия и 3) внутренней эластической мембраны, которой нет в артериях эластического типа.

Средняя оболочка смешанных артерий состоит примерно из 25% окончатых эластических мембран, 25% эластических волокон и 50% гладких миоцитов.

Наружная оболочка состоит из рыхлой соединительной ткани, в которой проходят сосуды сосудов и нервы. Во внутреннем слое наружной оболочки имеются пучки гладких миоцитов, расположенных продольно.

Артерии мышечного типа (arteria myotypica). Этот тип артерий включает средние и мелкие артерии, расположенные в теле и внутренних органах.

Внутренняя оболочка этих артерий включает 3 слоя: 1) эндотелий; 2) субэндотелий; 3) внутреннюю эластическую мембрану, которая очень четко выражена на фоне ткани стенки артерии.

Средняя оболочка представлена в основном пучками гладких миоцитов, расположенных спирально. Между миоцитами имеются коллагеновые и эластические волокна. Эластические волокна вплетаются во внутреннюю эластическую мембрану и переходят в наружную оболочку, образуя эластический каркас артерии. Благодаря каркасу артерии не спадаются.

Между средней и наружной оболочками имеется наружная эластическая мембрана, которая выражена слабее, чем внутренняя эластическая мембрана. Наружная оболочка представлена рыхлой соединительной тканью.

Микроциркуляторное русло. Включает артериолы, капилляры, венулы, артериоловенулярные анастомозы и лимфатические капилляры. Функциями микроциркуляторного русла являются: 1) обмен веществ и газов; 2) регуляция кровотока; 3) депонирование крови; 4) дренаж тканевой жидкости.

Артериолы по своему строению схожи с артериями мышечного типа. Внутренняя оболочка артериол представлена эндотелием, субэндотелием и внутренней эластической мембраной, имеющей отверстия, или перфорации; через эти отверстия миоциты средней оболочки контактируют с эндотелиоцитами внутренней оболочки. Через эти контакты адреналин крови воздействует на гладкие миоциты средней оболочки, вызывая их сокращение и сужение артериол. Кроме того, сокращение/ расслабление гладких миоцитов регулируется нервными окончаниями. Все три слоя внутренней оболочки артериол резко истончены.

Средняя оболочка артериолы представлена циркулярно направленными миоцитами, расположенными в 1-2 слоя.

Наружная оболочка артериол состоит из тонкого слоя рыхлой соединительной ткани.

Среди артериол имеются более крупные и менее крупные - прекапилляры, отходящие от крупных артериол. Диаметр артериол 50-100 мкм, диаметр прекапилляров 50 и менее мкм. В том месте, где от артериол отходят прекапилляры и от прекапилляров отходят капилляры, имеются пучки циркулярно расположенных миоцитов, которые являются сфинктерами, регулирующими кровоток в этих сосудах.

Функция артериол:              1) регуляция кровотока в органах и тканях и 2) регуляция

кровяного давления. По выражению И. М. Сечинова, «артериолы являются кранами сосудистой системы».

Гемокапилляры, в зависимости от того, в каких органах они находятся, могут иметь различный диаметр. Самые мелкие капилляры (диаметр 4-7 мкм) находятся в поперечно-полосатых мышцах, легких, нервах; более широкие капилляры (диаметр 8-11 мкм) - в коже и слизистых оболочках; еще более широкие капилляры - синусоиды (диаметр 12-30 мкм) располагаются в органах кроветворения, эндокринных железах, печени; самые широкие капилляры - лакуны (диаметр более 30 мкм) располагаются в столбчатой зоне прямой кишки и в пещеристых телах полового члена.

Капилляры, переплетаясь друг с другом, образуют сеть. Кроме того, они могут иметь форму петли (в сосочках кожи, ворсинках капсул суставов). Конец капилляра, который отходит от артериолы, называется артериальным, а который впадает в венулу - венозным. Артериальный конец всегда уже, а венозный - шире, иногда в 2-2, 5 раза. В эндотелиоцитах венозного конца больше митохондрий и микроворсинок.

Капилляры могут образовывать клубочки (в почках). Капилляры могут отходить от артериолы и впадать в артериолу (приносящая и выносящая артериолы клубочков почек) или отходить от венулы и впадать в венулу (портальная система гипофиза). Если капилляры располагаются между двумя артериолами или двумя венулами, то это называется чудесной сетью (rete mirabili).

Количество капилляров на единицу объема в различных тканях может быть различным. Так, например, в скелетной мышечной ткани на площади сечения в 1 мм2 встречается до 2000 срезов капилляров, в коже - около 40.

В каждой ткани есть примерно 50% капилляров, находящихся в резерве. Они называются нефункционирующими; находятся в спавшемся состоянии, через них проходит только плазма крови. При повышении функциональной нагрузки на орган часть нефункционирующих капилляров превращается в функционирующие.

Стенка капилляров состоит из трех слоев: 1) эндотелия, 2) слоя перицитов и 3) слоя адвентициальных клеток.

Слой эндотелия состоит из уплощенных клеток полигональной формы различных размеров (длиной от 5 до 75 мкм). На люминальной поверхности (поверхности, обращенной в просвет сосуда), покрытой плазмолеммальным слоем (гликокаликсом), имеются микроворсинки, увеличивающие поверхность клеток. Цитолемма эндотелиоцитов образует множество кавеол, в цитоплазме множество пиноцитозных пузырьков. Микроворсинки и пиноцитозные пузырьки являются морфологическим признаком интенсивного обмена веществ. В то же время цитоплазма бедна органеллами общего значения, имеются микрофиламенты, образующие цитоскелет клетки, на цитолемме есть рецепторы. Эндотелиоциты соединяются друг с другом при помощи интердигитаций и зон слипания. Среди эндотелиоцитов имеются фенестрированные, т. е. эндотелиоциты, у которых есть фенестры. Фенестрированные эндотелиоциты имеются в гипофизе и клубочках почек. В цитоплазме эндотелиоцитов встречаются ЩФ и АТФ-аза. Эндотелиоциты венозного конца капилляра образуют складки в виде клапанов, регулирующих кровоток.

Функции эндотелия многочисленны: 1) атромбогенная (отрицательный заряд гликокаликса и синтез ингибиторов - простогландинов, препятствующих агрегации тромбоцитов); 2) участие в образовании базальной мембраны; 3) барьерная, благодаря наличию цитоскелета и рецепторов; 4) участие в регуляции сосудистого тонуса, благодаря наличию рецепторов и синтезу факторов, расслабляющих или сокращающих миоциты сосудов; 5) сосудообразующая, благодаря синтезу факторов, ускоряющих пролиферацию и миграцию эндотелиоцитов; 6) секреция липопротеидлипазы и других веществ.

Базальная мембрана капилляров имеет толщину около 30 нм, в ней содержится АТФ-аза. В некоторых капиллярах в базальной мембране имеются отверстия или щели Функция базальной мембраны - обеспечение избирательной проницаемости (обменная), барьерная..

Перициты располагаются в расщелинах базальной мембраны, имеют отростчатую форму. В отростках есть сократительные филаменты. Отростки перицитов охватывают капилляр. Между перицитами и эндотелиоцитами имеются контакты. В том месте, где находится котакт, в базальной мембране есть отверстие.

Функции перицитов: 1) сократительная, благодаря наличию сократительных филаментов; 2) опорная, благодаря наличию цитоскелета; 3) участие в регенерации, благодаря способности дифференцироваться в гладкие миоциты; 4) контроль митоза эндотелиоцитов, благодаря контактам между перицитами и эндотелиоцитами; 5) участие в синтезе компонентов базальной мембраны, благоаря наличию гранулярной ЭПС.

Адвентициальный слой представлен адвентициальными клетками, погруженными в аморфный матрикс вокруг капилляра, в котором проходят тонкие коллагеновые и эластические волокна.

Классификация капилляров в зависимости от строения их стенки. В настоящее время различают 3 типа капилляров: 1 тип - соматические, характеризуются отсутствием фенестр в эндотелии и отверстий в базальной мембране - это капилляры скелетной мускулатуры, легких, нервных стволов, слизистых оболочек; 2-й тип - фенестрированные, характеризуются наличием фенестр в эндотелии и отсутствием отверстий в базальной мембране - это капилляры клубочков почек и ворсин кишечника; 3-й - перфорированные, характеризуются наличием фенестр в эндотелии и отверстий в базальной мембране - это синусоидные капилляры печени и органов кроветворения, благодаря большой ширине которых, повышенной проницаемости стенки и замедленному току крови в органах кроветворения осуществляется миграция зрелых форменных элементов в просвет синусоидов.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...