Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Глава III . Применения многомерной геометрии

 

О необходимости введения многомерного пространства (на примерах задач)

 

В чём состоит польза многомерных пространств? Где они применяются? Зачем понадобилось расширять представления о пространстве от реального трёхмерного мира до столь далёких абстракций, которые нелегко и не сразу укладываются в сознании?

Для ответа на эти вопросы необходимо рассмотреть несколько примеров задач.

Пример 1. Сумма n чисел равна единице. Каковы должны быть эти числа, чтобы сумма их квадратов была наименьшей?

 

Рис. 33

 

Решение. Получим ответ на поставленный вопрос геометрическим путём, рассматривая сначала случай n = 2, затем n = 3, а потом обсудим ситуацию при n > 3.

Итак, пусть сначала n = 2. Иначе говоря, рассматривая числа х, у, удовлетворяющие условию х + у = 1, и требуется найти, в каком случае сумма квадратов х 2 + у 2 будет наименьшей. Уравнение х + у = 1 определяет на координатной плоскости прямую (рис. 33). Рассмотрим окружность S с центром в начале координат, которая касается этой прямой (точка А). Если точка М (х, у) прямой l отлична от А, то она лежит вне окружности S и поэтому | ОМ | больше радиуса r этой окружности, т. е. . Если же М = А, то сумма х 2 + у 2 равна r, т.е. именно для точки А эта сумма принимает наименьшее значение. Точка А имеет координаты х = у = 1/2; это и есть решение поставленной алгебраической задачи при (n = 2).

 

Рис. 34

 

Пусть n = 3. Уравнение x + y + z =1 определяет в пространстве плоскость L. Рассмотрим сферу S c центром в начале координат, касающуюся этой плоскости в некоторой точке А (рис. 34). Для любой точки , отличной от А, её расстояние от точки О больше радиуса r сферы S,  и поэтому , при М = А имеем .

Таким образом, именно для точки А сумма  принимает наименьшее значение. Точка А имеет равные координаты: x = y = z (поскольку при повороте пространства, переставляющем оси координат: , и плоскость L исфера S переходят в себя, а поэтому их общая точка остаётся неподвижной). А так как x + y + z =1, то точка А имеет координаты x = y = z = 1/3; это и есть решение поставленной задачи (для n =3).

Рассмотрим произвольное n; рассуждения будем вести в n -мерном пространстве, точками которого являются последовательности (х 1, х 2, …, х n), состоящие из n действительных чисел. Уравнение   определяет в этом пространстве «плоскость» L, имеющую размерность n – 1 (гиперплоскость в n -мерном пространстве). Рассмотрим сферу S с центром в начале координат О, касающуюся гиперплоскости L в некоторой точке А. Все точки гиперплоскости L, кроме А, лежат вне сферы S, т. е. находятся от начала координат О на расстоянии, равном r. Следовательно, сумма  принимает наименьшее значение по сравнению со всеми другими точками гиперплоскости L. Заметим теперь, что все координаты точки А равны между собой:  (поскольку поворот пространства, переставляющий оси координат: , и плоскость L исфера S переходят в себя, а поэтому их общая точка остаётся неподвижной), откуда . Итак, при  сумма квадратов  принимает наименьшее значение для .

Пример 2. На три завода З1, З2, З3 (рис. 35) нужно завести сырьё одинакового вида, которое хранится на двух складах С1, С2 в соответствии с данными, указанными в таблице.

 

Наличие сырья

Потребность в сырье

С1 С2 З1 З2 З3
20 т 25 т 10 т 15 т 20 т

 

Требуется найти наиболее выгодный вариант перевозок, т. е. вариант, для которого общее количество тонно-километров будет наименьшим.

Решение. Обозначим через х и у количество сырья, которое нужно вывести со склада С1 соответственно на заводы З1, З2. Тогда со второго склада нужно довезти на эти заводы 10 – х и 15 – у тонн сырья. Так как общее количество имеющегося на складах сырья совпадает с потребностью заводов, т. е. всё сырьё должно быть вывезено со складов на заводы, то после обеспечения заводов З1 и З2 оставшееся на складах сырьё полностью вывозится на завод З3, т. е. со склада С1 на завод З3 вывозится 20 – х – у, а со склада С2 25 – (10 – х) – (15 – у) = х + у тонн.

 

Рис. 35

 

Учитывая расстояния (рис. 35), находим общее число тонно-километров:

 

5 х + 7 у + 10(20 – ху) + 3(10 – х) – (15 – у) + 6(х + у) = 290 – 2 ху.

 

Заметим теперь, что все величины, выражающие количество перевозимого по разным дорогам сырья, неотрицательны:

 

.

 

Каждое из этих неравенств определяет в системе координат х, у полуплоскость, а система всех неравенств определяет пересечение этих полуплоскостей, т. е. выпуклый многоугольник Q (рис. 36). Заметим, что последнее неравенство можно отбросить: оно является следствием первых двух.

 

 Рис. 36

 

Таким образом, задача о нахождении наиболее выгодного варианта перевозок сводится математически к нахождению точки М (х, у) многоугольника Q, в который функция 290 – 2 ху достигает наименьшего значения. Вместо этой функции можно рассматривать функцию – 2 ху.

Действительно, если будет найдено наименьшее значение функции – 2 ху на многоугольнике Q, то прибавив к этому значению 290, получим наименьшее значение функции 290 – 2 ху. На рисунке 37 показано, что наименьшее значение линейной функции, рассматриваемой на многоугольнике Q, достигается в вершине С. Иначе говоря, наиболее выгодный вариант перевозок соответствует точке С (10; 10), т. е. х = 10, у = 10. Общее количество тонно-километров для этих значений х, у равно 290 – 2·10 – 10 = 260. Видно, геометрическая модель позволила полностью решить поставленную задачу.

 

 Рис. 37

В рассмотренной задаче все объёмы перевозок со складов на заводы удалось выразить через две переменные х, у. Это позволило дать геометрическую интерпретацию получившейся системы неравенств на координатной плоскости. Допустим, однако, что при тех же двух складах число заводов равно четырём с потребностью в сырье соответственно 8, 10, 12 и 15 т. Тогда нужно будет ввести три переменные x, y, z, обозначающие количество сырья, вывозимого со склада С1 на первые три завода. Если задать расстояния со складов до заводов, то можно будет составить выражение для общего числа тонно-километров. Можно написать и неравенства, выражающие неотрицательность количества сырья, вывозимого со складов на заводы. Теперь эти неравенства будут зависеть от трёх переменных x, y, z. Каждое из этих неравенств задаёт полупространство, а система всех неравенств определяет пересечение полупространств, т. е. выпуклый многогранник в трёхмерном пространстве.

Таким образом, для четырёх заводов задача о перевозке сырья будет математически формулироваться как задача о наименьшем значении линейной функции на трёхмерном выпуклом многограннике.

Для двух складов и пяти заводов (при сохранении того условия, что всё сырьё должно быть вывезено полностью) потребуются уже четыре переменные, обозначающие количество сырья, вывозимого со склада С1 на первые четыре завода. Теперь мы будем иметь неравенства с четырьмя переменными, и для получения геометрической интерпретации потребуется четырёхмерное пространство, а при большем числе складов и заводов – пространство ещё большей размерности.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...