Обнаружение паров в воздухе
За рубежом (США, Англия) разработаны и выпускаются приборы, специально предназначенные для обнаружения остатков ЛВЖ и ГЖ при расследовании поджогов. Сообщалось [41,42] о выпуске компанией Analysis Automation Ltd (Великобритания) переносных газоанализаторов типа HNN модели 101, предназначенных для использования при осмотре места пожара и обнаружения в воздухе малых концентраций паров ГЖ, наиболее часто используемых при поджогах. Прибор имеет фотоионизационный датчик, стрелочный индикатор и работает даже в условиях высокой влажности воздуха после тушения пожара водой. Ценным обстоятельством является то, что прибор позволяет прогонять пробы воздуха через специальный сорбент, концентрируя на нем микроколичества искомого вещества. В дальнейшем проба может анализироваться в лаборатории или храниться в качестве вещественного доказательства. Существуют и аналогичные отечественные приборы с фотоионизационными датчиками – АНТ-2, Колион (см. выше, раздел "Приборы и оборудование..."). Достаточно давно выпускаются и специальные газовые хроматографы для расследования поджогов. Еще в 1980 году сообщалось о выпуске фирмой "GOW – MAC" (США) переносного хроматографа "5290 Arson Chromatograph" [43]. Прибор типа Century Organic Vapor Analyzers выпускает компания Foxboro (США) [44]. Кроме индикации наличия углеводородных соединений и определения вида жидкости, прибор, судя по публикации, позволяет определять оптимальное место для отбора проб на лабораторные исследования. Указывается, что порог чувствительности прибора модели OVA-128 составляет 0,2 млн-1, модели OVA -108 – 0,5 млн-1 [44]. В мире широко известны и простейшие газоанализаторы с индикаторными трубками, в частности, фирмы "Draeger" (Германия). Газоанализаторы работают на линейно-колориметрическом принципе и представляют собой ручной насос, с помощью которого определенный объем воздуха прокачивается через стеклянную индикаторную трубку. Трубки, используемые в газоанализаторах, рассчитаны на определение индивидуальных или групп (смесей) веществ, например, бензина, толуола, ацетона, спиртов и т.д. При наличии паров определенной жидкости содержимое трубки (твердый носитель, пропитанный реактивом) окрашивается в соответствующий цвет. При этом длина окрашенной зоны пропорциональна концентрации паров в воздухе.
Сообщалось [45] о выпуске фирмой "Drаeger" специальных комплектов (газоанализаторов) для пожарных. Комплект оборудования позволяет определить наличие и концентрацию 30-ти токсичных газов, концентрацию кислорода, а также содержит индикаторную бумагу для идентификации жидких веществ и колбы для отбора проб твердых веществ. Специальные газоанализаторы фирма выпускает для работы пожарных под землей [46]. Весьма любопытен и газоанализатор для исследования загрязненных почв; он имеет зонд, состоящий из сверла с насосом, который может подавать пробу воздуха в индикаторные трубки с глубины до 6 метров [47]. Самый распространенный отечественный газоанализатор этого типа – УГ-2 также представляет собой насос сильфонного типа с комплектом индикаторных трубок. Он долгие годы широко использовался в контроле окружающей среды и для других аналогичных целей. В работе [48] описываются результаты исследований, которые специалисты ВНИИПО проводили с целью изучения возможности использования УГ-2 для обнаружения остатков ЛВЖ и ГЖ. У нас нет сведений, выпускается ли в настоящее время прибор УГ-2. Известно, однако, что в Санкт-Петербурге институтом "Химаналит" изготавливается аналогичный по принципу действия прибор – мини-экспресс-лаборатория "Инспектор-кейс" (МЭЛ). Лаборатория состоит из поршневого насоса, набора индикаторных трубок и упакована в чемодан (кейс) размером 380´290´70 мм. Предназначена МЭЛ для измерения концентраций вредных газов и паров в воздухе. Несколько таких комплектов приобретено для испытательных пожарных лабораторий; их планируется использовать в поисках остатков ЛВЖ и ГЖ на месте пожара.
Описав кратко технику, которая может быть использована для обнаружения и исследования паров ЛВЖ в воздухе, зададимся вопросом, насколько эффективны такие поиски именно на месте пожара. Судя по зарубежным публикациям, отдельные случаи обнаружения паров ЛВЖ в воздухе после пожара имеются. В России имеются примеры эффективного применения в ИПЛ для тех же целей газоанализатора УГ-2 и его аналогов. Однако, по нашему мнению, это исключения, которые только подтверждают правило – на большинстве пожаров следов ЛВЖ в газовой фазе (в воздухе) практически не остается. Они просто выгорают и рассеиваются. От нефтепродуктов, например, на пожаре сохраняются, в основном, тяжелые, малолетучие остатки, сорбированные древесиной, тканями, грунтом, другими сыпучими материалами. Поэтому анализ газовой фазы, если и дает результаты, то обычно при неразвившихся пожарах, при горении в замкнутых, плохо проветриваемых объемах или попадании туда ЛВЖ при поджоге. Эффективным, например, может оказаться анализ воздуха внутри конструкции пола в момент вскрытия последнего в ходе динамического осмотра. Существенно повышает шансы на обнаружение паров ЛВЖ в воздухе концентрирование следовых количеств ЛВЖ на сорбенте. Для этого на месте пожара воздух прокачивают через капсулу или колонку с сорбентом (обычно это твердый адсорбент), который поглощает микроколичества ЛВЖ и таким образом концентрирует их. Затем (уже, как правило, в лаборатории) поглощенные вещества десорбируют и исследуют обычно хроматографическим методом. Поглотительные устройства могут представлять собой колонки диаметром в несколько миллиметров и длиной от 2-5 см до полуметра. Через такую колонку продувают с помощью воздуходувки или ручного насоса (сильфонного устройства) до 200 л воздуха со скоростью 100-4000 мл/мин. [49].
В работе [50] описывается применение для целей обнаружения остатков ЛВЖ специального концентратора CDS. На месте пожара через концентратор – патрон размером 3´1/4 дюйма прокачивают несколько сот см3 воздуха. Патрон заполнен специальным адсорбентом "Тэнакс". В лаборатории концентратор подвергают импульсному нагреву в специальной приставке к хроматографу. Десорбированные с Тэнакса вещества исследуют традиционным газохроматографическим методом. Авторы указывают, что динамический отбор 150-300 см3 воздуха и концентрирование следов ЛВЖ на Тэнаксе позволяют повысить чувствительность анализа по сравнению с обычным вариантом в несколько сот раз [50]. Кроме упомянутого выше Тэнакса, в качестве сорбентов для концентрирования следов ЛВЖ из воздуха могут быть использованы другие пористые полимерные сорбенты – порапаки N, R, S, T, хромосорбы 101-105, полисорбы, синахром, наконец, активированный уголь, графитизированная сажа. Однако наиболее удачным сорбентом, видимо, все же является Тэнакс. Тэнакс GC - полимерный сорбент (поли-2,6 - дифенил-п-фениленоксид); он менее полярен, чем порапаки и хромосорбы, имеет очень высокую термостабильность, не реагирует с большинством органических веществ даже при температуре выше 300 0С. Тэнакс обладает очень высокой адсорбционной емкостью и эффективностью сорбции органических веществ с самой различной молекулярной массой и химической природой. За счет указанных свойств пробу на Тэнакс можно отбирать с высокой скоростью за 10-20 сек. [52-54, цит. по 51]. Ярким примером возможностей Тэнакса GC в улавливании микроколичеств газообразных веществ из воздуха является отбор и последующий анализ веществ из атмосферы кабины американского космического корабля "Скайлэб". После исследования в системе "газовый хроматограф-масс-спектрометр" было обнаружено около 300 различных веществ, отличающихся по концентрации на 6 порядков [55, 56, цит. по 51].
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|