Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Планирование и робототехника. Экспертные системы




Планирование и робототехника

Исследования в области планирования начались с попытки сконструировать роботов, которые бы выполняли свои задачи с некоторой степенью гибкости и способностью реагировать на окружающий мир. Планирование предполагает, что робот должен уметь выполнять некоторые элементарные действия. Он пытается найти последовательность таких действий, с помощью которой можно выполнить более сложную задачу, например, двигаться по комнате, заполненной препятствиями. Планирование по ряду причин является сложной проблемой, не малую роль в этом играет размер пространства возможных последовательностей шагов. Даже очень простой робот способен породить огромное число различных комбинации элементарных движений. Для написания программы, которая могла бы разумно определить для робота лучший путь из всех вариантов, и не была бы при этом перегружена огромным их числом, потребуются сложные методы для представления пространственного знания и управления перебором в пространстве альтернатив. Одним из методов, применяемых человеческими существами при планировании, является иерархическая декомпозиция задачи. В то время как люди разрабатывают планы безо всяких усилий, создание компьютерной программы, которая бы занималась тем же – сложная проблема. Казалось бы, такая простая вещь, как разбиение задачи на независимые подзадачи, на самом деле требует изощренных эвристик и обширного знания об области планирования. Не менее сложная проблема – определить, какие планы следует сохранить, и как их обобщить для использования в будущем. Робот, слепо выполняющий последовательности действий, не реагируя на изменения в своем окружении, или неспособный обнаруживать и исправлять ошибки в своем собственном плане, едва ли может считаться разумным.

Организация планов, позволяющая реагировать на изменение условий окружающей среды – основная проблема планирования. Наконец, робототехника была одной из областей исследований искусственного интеллекта, породившей множество концепций, лежащих в основе агенто-ориентированного принятия решений. Каждый агент отвечает за свою часть задания, и общее решение возникает в результате их скоординированных действий. Исследования в области планирования сегодня вышли за пределы робототехники, теперь они включают также координацию сложных систем задач и целей.

Экспертные системы

Экспертные системы - это направление исследований в области искусственного интеллекта по созданию вычислительных систем, умеющих принимать решения, схожие с решениями экспертов в заданной предметной области. Как правило, экспертные системы создаются для решения практических задач в некоторых узкоспециализированных областях, где большую роль играют знания «бывалых» специалистов. Экспертные системы были первыми разработками, которые смогли привлечь большое внимание к результатам исследований в области искусственного интеллекта. Экспертные системы имеют одно большое отличие от других систем искусственного интеллекта: они не предназначены для решения каких-то универсальных задач, как например нейронные сети или генетические алгоритмы. Экспертные системы предназначены для качественного решения задач в определенной разработчиками области, в редких случаях – областях. Экспертное знание – это сочетание теоретического понимания проблемы и практических навыков ее решения, эффективность которых доказана в результате практической деятельности экспертов в данной области. Фундаментом экспертной системы любого типа является база знаний, которая составляется на основе экспертных знаний специалистов. Правильно выбранный эксперт и удачная формализация его знаний позволяет наделить экспертную систему уникальными и ценными знаниями. Экспертная система – это не простая программа, которая пишется одним или несколькими программистами. Экспертная система является плодом совместной работы экспертов в данной предметной области, инженеров по знаниям и программистов. Но стоит отметить, что встречаются случаи, когда программы пишутся самими экспертами в данной области. Эксперт предоставляет необходимые знания о тщательно отобранных примерах проблем и путей их решения. Например, при создании экспертной системы диагностики заболеваний врач рассказывает инженеру по знаниям об известных ему заболеваниях. Далее эксперт раскрывает список симптомов, которые сопровождают каждое заболевание и в заключение рассказывает об известных ему методах лечения. Инженер по знаниям, формализует всю полученную информацию в виде базы знаний и помогает программисту в написании экспертной системы. Первую экспертную систему, которую назвали Dendral, разработали в Стэнфорде в конце 1960-х г. г. Эта была экспертная система, определяющая строение органических молекул по химическим формулам и спектрографическим данным о химических связях в молекулах. Экспертная система Dendral одной из первых использовала эвристические знания специалистов для достижения уровня эксперта в решении задач, однако методика современных экспертных систем связана с другой разработкой – Myсin. В ней использовались знания экспертов медицины для диагностики и лечения специального менингита и бактериальных инфекций крови. Экспертная система Mycin, разработанная в том же Стэнфорде в середине 1970-х г. г., одной из первых обратилась к проблеме принятия решений на основе ненадежной или недостаточной информации. Все рассуждения экспертной системы Mycin были основаны на принципах управляющей логики, соответствующих специфике предметной области. Многие методики разработки экспертных систем, использующиеся сегодня, были впервые разработаны в рамках проекта Mycin. На сегодняшний день создано уже большое количество экспертных систем. Экспертные системы неспособны предоставить осмысленные объяснения своих рассуждений, как это делает человек. Как правило, экспертные системы всего лишь описывают последовательность шагов, предпринятых в процессе поиска решения. Отладка и тестирование любой компьютерной программы является достаточно трудоемким делом, но проверять экспертные системы особенно тяжело. Это является серьезной проблемой, поскольку экспертные системы применяются в таких критичных областях, как управление воздушным и железнодорожным движением, системами оружия и в ядерной промышленности. Экспертные системы обладают еще одним большим недостатком: они неспособны к самообучению. Для того, чтобы поддерживать экспертные системы в актуальном состоянии необходимо постоянное вмешательство в базу знаний инженеров по знаниям.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...