Нейронные сети. Многоагентные системы
Нейронные сети Нейронные сети – это одно из направлений исследований в области искусственного интеллекта, основанное на попытках воспроизвести нервную систему человека. А именно: способность нервной системы обучаться и исправлять ошибки, что должно позволить смоделировать, хотя и достаточно грубо, работу человеческого мозга. Нейронная сеть или нервная система человека – это сложная сеть структур человека, обеспечивающая взаимосвязанное поведение всех систем организма. Биологический нейрон – это специальная клетка, которая структурно состоит из ядра, тела клетки и отростков. Одной из ключевых задач нейрона является передача электрохимического импульса по всей нейронной сети через доступные связи с другими нейронами. Притом, каждая связь характеризуется некоторой величиной, называемой силой синаптической связи. Эта величина определяет, что произойдет с электрохимическим импульсом при передаче его другому нейрону: либо он усилится, либо он ослабится, либо останется неизменным. Биологическая нейронная сеть обладает высокой степенью связности: на один нейрон может приходиться несколько тысяч связей с другими нейронами. Но, это приблизительное значение и в каждом конкретном случае оно разное. Передача импульсов от одного нейрона к другому порождает определенное возбуждение всей нейронной сети. Величина этого возбуждения определяет реакцию нейронной сети на какие-то входные сигналы. Например, встреча человека со старым знакомым может привести к сильному возбуждению нейронной сети, если с этим знакомым связаны какие-то яркие и приятные жизненные воспоминания. В свою очередь сильное возбуждение нейронной сети может привести к учащению сердцебиения, более частому морганию глаз и к другим реакциям. Встреча же с незнакомым человеком для нейронной сети пройдет практически незаметной, а значит и не вызовет каких-либо сильных реакций. В 60-80 годах XX века приоритетным направлением исследований в области искусственного интеллекта были экспертные системы. Экспертные системы хорошо себя зарекомендовали, но только в узкоспециализированных областях. Для создания более универсальных интеллектуальных систем требовался другой подход. Наверное, это привело к тому, что исследователи искусственного интеллекта обратили внимание на биологические нейронные сети, которые лежат в основе человеческого мозга. Нейронные сети в искусственном интеллекте – это упрощенные модели биологических нейронных сетей. На этом сходство заканчивается. Структура человеческого мозга гораздо более сложная, чем описанная выше, и поэтому воспроизвести ее хотя бы более менее точно не представляется возможным. У нейронных сетей много важных свойств, но ключевое из них – это способность к обучению. Обучение нейронной сети в первую очередь заключается в изменении «силы» синаптических связей между нейронами. Следующий пример наглядно это демонстрирует. В классическом опыте Павлова, каждый раз непосредственно перед кормлением собаки звонил колокольчик. Собака достаточно быстро научилась ассоциировать звонок колокольчика с приемом пищи. Это явилось следствием того, что синаптические связи между участками головного мозга, ответственными за слух и слюнные железы, усилились. И в последующем возбуждение нейронной сети звуком колокольчика, стало приводить к более сильному слюноотделению у собаки. На сегодняшний день нейронные сети являются одним из приоритетных направлений исследований в области искусственного интеллекта.
Многоагентные системы
В классической теории искусственного интеллекта решение какой-либо задачи сводится к созданию некоторой одной интеллектуальной системы, называемой агентом, которая, имея в своем распоряжении все необходимые знания, способности и вычислительные ресурсы, способна решить некоторую глобальную проблему. Многоагентные системы или мультиагентные системы – это направление искусственного интеллекта, которое для решения сложной задачи или проблемы использует системы, состоящие из множества взаимодействующих агентов. В теории многоагентных систем (также часто встречается название «мультиагентные системы») за основу берется противоположный принцип. Считается, что один агент владеет всего лишь частичным представлением о глобальной проблеме, а значит, он может решить лишь некоторую часть общей задачи. В связи с этим для решения сложной задачи необходимо создать некоторое множество агентов и организовать между ними эффективное взаимодействие, что позволит построить единую многоагентную систему. В многоагентных системах весь спектр задач по определенным правилам распределяется между всеми агентами, каждый из которых считается членом организации или группы. Распределение заданий означает присвоение каждому агенту некоторой роли, сложность которой определяется исходя из возможностей агента. Для организации процесса распределения задачи в многоагентных системах создается либо система распределенного решения проблемы либо децентрализованный искусственный интеллект. В первом варианте процесс декомпозиции глобальной задачи и обратный процесс композиции найденных решений происходит под управлением некоторого единого «центра». При этом многоагентная система проектируется строго сверху вниз, исходя из ролей определенных для агентов и результатов разбиения глобальной задачи на подзадачи. В случае использования децентрализованного искусственного интеллекта распределение заданий происходит в процессе взаимодействия агентов и носит больше спонтанный характер. Нередко это приводит к появлению в многоагентных системах резонансных, синергетических эффектов. Технология многоагентных систем, хотя и насчитывает уже более чем десятилетнюю историю своего активного развития, находится в настоящее время еще в стадии становления. Ведутся активные исследования в области теоретических основ формализации основных понятий и компонент систем, в особенности в области формализации ментальных понятий. Основные достижения в этой части пока не очень ориентируются на аспекты практической реализации и пока далеки от практики. В частности, при формализации ментальных понятий полностью игнорируются все разработанные в искусственном интеллекте подходы для работы с плохо структурируемыми понятиями, не вполне определенными понятиями, методы, которые базируются на вероятность и нечеткость. Представляется, что это обширное, новое и чистое поле деятельности для соответствующих специалистов. Мультиагентные системы - это активно развивающееся направление искусственного интеллекта, которое в настоящее время еще находится в стадии становления. В сообществе специалистов по мультиагентным системам как одна из перспективных моделей рассматривается модель самообучающегося агента. Однако при этом делаются ссылки на результаты в области извлечения знаний и машинного обучения, полученные ранее в искусственном интеллекте применительно к экспертным системам. Очевидно, что применительно к мультиагентной системе задача обучения имеет много специфики по сравнению с задачами в общей постановке, однако, эта специфика пока не изучается и не ведутся исследования по этой проблеме. Весьма специфична и задача обучения агентов коллективному поведению, ведь кооперативное решение задач подразумевает совместное использование знаний нескольких агентов. Этот вопрос тоже пока остается вне поля зрения специалистов по мультиагентным системам. Работы в области многоагентных систем, в особенности разработка приложений, требуют привлечение знаний и технологий из ряда областей, которые ранее были вне поля зрения специалистов по искусственному интеллекту. Прежде всего это относится к параллельным вычислениям, технологии открытой распределенной обработки, обеспечения безопасности и мобильности агентов. Необходимы знания в области сетевых компьютерных технологий и, в особенности, в области программирования в Internet. Технология мультиагентных систем не является просто объединением различных результатов в области искусственного интеллекта. Интеграция, которая приводит к парадигме многоагентных систем, привносит ряд принципиально новых свойств и возможностей в информационные технологии и по существу представляет собой качественно новый, более высокий уровень ее развития, тот уровень, который позволяет прогнозировать ее ведущее положение в ближайшие десятилетия. Специалистам в области искусственного интеллекта здесь принадлежит ведущая роль.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|