Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Способы определения точки эквивалентности




В редоксиметрии точку эквивалентности можно определить с помощью различных инструментальных методов (например, потенциометрически) либо визуально.

Визуальное обнаружение конечной точки титрования может быть проведено по изменению окраски одного из участников протекающей реакции, либо с помощью индикаторов. Например, в перманганатометрии критерием достижения точки эквивалентности обычно служит появление неисчезающей розовой окраски вследствие добавления к бесцветному титруемому раствору одной лишней капли ярко-малинового раствора KМnO4.

Индикаторы, используемые для определения точки эквивалентности, могут быть специфическими либо окислительно-восстановительными.

Специфические индикаторы реагируют на изменение концентрации одного из участников химической реакции, протекающей при титровании, образуя с ним нестойкое яркоокрашенное соединение.

Оно легко может разрушаться при добавлении второго реагента. Например, в иодометрии для этих целей используют раствор крахмала, образующий с I2 соединение ярко-синего цвета. По исчезновении (в результате расходования I2) или возникновении (при добавлении лишней капли раствора I2) синей окраски судят о достижении точки эквивалентности.

Окислительно-восстановительными, или редокс-индикаторами, называются вещества, которые изменяют свою окраску в зависимости от величины окислительно-восстановительного потенциала системы.

Под действием окислителя или восстановителя в структуре молекулы редокс-индикатора происходят изменения, вызывающие возникновение новой окраски. Таким образом, в растворе редокс-индикатора существует равновесие между его окисленной и восстановленной формами, имеющими разную окраску, которое сдвигается при изменении потенциала системы:

Indox + ne- ↔IndRed

 

где Indox – окисленная, а IndRed – восстановленная формы индикатора; n – число электронов, принимающих участие при переходе молекулы индикатора из одной формы в другую.

 

Потенциал такой индикаторной системы может быть рассчитан по уравнению Нернста:

 

 

где Е0 – стандартный электродный потенциал, возникающий в системе, когда молярные концентрации окисленной (с(Indox)) и восстановленной (с(IndRed)) форм индикатора будут равны друг другу.

 

Как и в случае индикаторов других типов, изменение окраски редокс-индикаторов происходит в некотором интервале изменения величины их электродного потенциала. Можно показать, что крайние значения этого интервала определяются соотношением:

 

 

Редокс-индикатор можно использовать в окислительно-восстановительном титровании, если его интервал перехода лежит внутри скачка редокс-потенциала системы на кривой титрования.

Редокс-индикаторы могут быть двухцветными (каждая из его форм имеет свою специфическую окраску) и одноцветными (табл. 22). В первом случае в точке эквивалентности мы наблюдаем переход одной окраски раствора в другую. Во втором случае – исчезновение или возникновение окраски титруемого раствора.

 

Таблица 22. Некоторые окислительно-восстановительные индикаторы

Индикатор Е0, В Окраска
Окисленная форма Восстановленная форма
Нейтральный красный +0,240 красная нет
Метиловый синий +0,532 синяя нет
Дифениламин +0,76 фиолетовая нет
Эриоглауцин А +0,99 оранжевая жёлтая
Ферроин +1,06 бледно-голубая красная
5-Нитроферроин +1,25 бледно-голубая красная

 

Редокс-индикаторы бывают обратимыми и необратимыми. Первые могут изменять свою окраску в растворе в зависимости от величины электродного потенциала системы неограниченное число раз. Вторые изменяют свою окраску необратимо, например, при окислении разрушаются с образованием бесцветных продуктов, как индиго под действием гипохлоритов или нафтоловый сине-чёрный под действием ионов BrO3-.

Перманганатометрия

Перманганатометрическим титрованием называется титриметрический метод анализа, основанный на использовании в качестве титранта KМnO4.

Перманганатометрическое титрование проводят чаще всего в кислой среде, реже – в нейтральной. Щелочные растворы KМnO4 используют для количественного определения некоторых органических соединений: спиртов, альдегидов. Во всех трёх случаях продукт восстановления иона МnO4 и редокс-потенциал системы различны:

 

а) МnO4 + 8H+ + 5ē = Mn2+ + 4H2O,

E0(МnO4/ Mn2+) = +1,58В, рН<4;

 

б) МnO4 + 2H2O + 3ē = MnO2↓ +4OH,

Е0(МnO4/ MnO2) = +0,6В, рН≈5-8;

 

в) МnO4 + ē → МnO42–,

Е0(МnO4/МnO42–) = +0,54В, рН>9.

 

Таким образом, в кислой среде, окислительная активность KМnO4 является самой высокой, что позволяет при этих условиях определить гораздо большее число различных восстановителей, чем в нейтральной и щелочной средах. Кроме того, при титровании в нейтральной и слабощелочной средах образуется тёмно-бурый осадок MnO2, сильно затрудняющий фиксирование точки эквивалентности.

Для создания кислой среды в перманганатометрии используют разбавленный раствор H2SO4 (c(H2SO4)) ≈ 1моль/дм3.

Азотная кислота (особенно содержащая оксиды азота) сама является сильным окислителем и может, наряду с KМnO4, окислять определяемое вещество, что приведёт к получению заниженных результатов анализа. Соляная и другие галогеноводородные кислоты (HBr, HI) будут, наоборот, окисляться KМnO4:

 

2KМnO4 + 16 HCl → 5Cl2 +2MnCl2 + 2 KCl +8H2O

 

Продуктом восстановления иона МnO4 в кислой среде является бесцветный ион Mn2+, что очень удобно для определения точки эквивалентности.

Рабочий раствор KМnO4 по точной навеске кристаллического вещества приготовить невозможно, т.к. в нём всегда содержится некоторое количество MnO2.

Кроме того, MnO2 образуется при окислении органических соединений, присутствующих в окружающей среде, например в воздухе.

В водных растворах концентрация KМnO4 со временем уменьшается, так как перманганат калия частично расходуется на окисление различных посторонних примесей (присутствующих даже в дистиллированной H2O) и самой воды.

 

4МnO4+ 2H2O → MnO2↓ + 3О2 + 4ОН

 

Данная реакция протекает достаточно медленно, поэтому правильно приготовленный раствор KМnO4 можно хранить в течение нескольких недель.

Обычно раствор KМnO4 готовят несколько больше заданной концентрации. Рассчитанную для этих целей навеску вещества взвешивают на технических весах.

Перед установлением точной концентрации раствор KМnO4 кипятят в течение небольшого промежутка времени (≈10 минут), а затем после охлаждения выдерживают в тёмной посуде несколько дней, чтобы завершились процессы окисления органических веществ и других примесей, содержащихся в H2O. После этого раствор фильтруют через стеклянный фильтр для удаления образовавшегося MnO2 и затем титруют рабочим раствором дигидрата щавелевой кислоты H2C2O4·2H2O или её натриевой соли Na2C2O4 (приготовленным по точной навеске вещества) в соответствии с уравнением:

 

2KМnO4 + 5H2C2O4 +3H2SO4 = 2MnSO4 + 10CO2 +K2SO4 +8H2O

 

Данная реакция протекает медленно, поэтому на начальном этапе её проводят при нагревании (около 700С). Также она является автокаталитической – роль катализатора выполняют образующиеся ионы Mn2+. К концу титрования их накапливается большое количество и реакция с достаточной скоростью начинает протекать и при обычных условиях.

Перегревать раствор H2C2O4 (тем более доводить его до кипения) нельзя, т.к. растворенное вещество при этом будет частично разрушаться:

 

H2C2O4 H2O + CO2 + CO

 

Вместо нагревания к раствору щавелевой кислоты можно добавить определенное количество горячей H2O с таким расчётом, чтобы температура смеси стала равной приблизительно
60-80оС.

Индикаторы в перманганатометрическом титровании обычно не используются. В их роли выступает раствор KМnO4, имеющий интенсивную фиолетовую окраску. Конечную точку титрования обнаруживают по исчезновению окраски раствора KМnO4 (если к нему прибавляют из бюретки исследуемый раствор) или, наоборот, появлению неисчезающей слабо-розовой окраски при добавлении одной лишней капли выступающего в роли титранта раствора KМnO4.

Не рекомендуется оставлять раствор KМnO4 в бюретках на длительное время.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...