Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Отделы ЦНС, принимающие участие в регуляции дыхания

Регуляция дыхания и другие функции организма

 

Дыхательный центр продолговатого мозга обеспечивает такую вентиляцию легких, которая необходима для поддержания на оптимальном уровне напряжения кислорода и углекислого газа. Напряжение этих газов, воздействуя на дыхательный центр через хеморецепторы, вызывает ответную реакцию дыхания, направленную на устранение отклонения в концентрации. Таким образом осуществляется регуляция дыхания по принципу отклонения регулируемого параметра от нормальных значений.

Вместе с тем, изменения вентиляции легких наблюдаются при самых разнообразных ситуациях, когда нет изменения напряжения кислорода и углекислого газа. Например, воздействия холода или тепла на кожу приводят к возбуждению дыхательного центра и учащению дыхания. Кроме того, на дыхание влияет изменение температуры тела: и понижение, и незначительное повышение вызывают увеличение вентиляции легких. Весьма существенно увеличивает частоту дыхания боль. Вызывают изменения дыхания и физическая, и эмоциональная нагрузки. Такое изменение паттерна дыхания, не обусловленное изменением концентрации газов в крови, является проявлением варианта регуляции по принципу возмущения. Это означает, что тем сигналом, который поступает в дыхательный центр и вызывает гипервентиляцию, служит не отклонение в газовом составе крови, а сигнал о происходящем в организме возмущении, способном привести к отклонению в газовом составе крови, регуляция осуществляется до того, как произойдут отклонения. Механизмы возмущающих влияний на дыхательный центр становятся понятны, если вспомнить о том, что дыхательный центр входит в состав ретикулярной формации ствола мозга.

Ретикулярная формация ствола мозга

Под ретикулярной формацией обычно понимают клеточную массу, лежащую в толще мозгового ствола от нижних отделов продолговатого до промежуточного мозга. Эта клеточная масса слабо структурирована и не имеет четких границ. Внутри ретикулярной формации расположены чувствительные и двигательные ядра продолговатого, среднего и промежуточного мозга. Нейроны ретикулярной формации характеризуются немногочисленными длинными и мало ветвящимися дендритами, их шипики слабо дифференцированы. В медиальной части ретикулярной формации расположены крупные и гигантские клетки, в продолговатом мозге они сконцентрированы в гигантоклеточном ядре. Именно от этих клеток отходят аксоны, которые формируют эфферентные пути. В частности, ретикулоспинальный тракт, пути к таламусу, мозжечку, базальным ганглиям и коре больших полушарий.

Сетевое строение ретикулярной формации обеспечивает высокую надежность ее функционирования и устойчивость к повреждающим воздействиям, потому что локальные повреждения всегда компенсируются за счет сохранившихся элементов сети. Такое сетевое строение обеспечивает и еще одну важную особенность функционирования ретикулярной формации: раздражение любой из ее частей за счет многочисленных связей охватывает всю данную структуру. Кроме того, эффекты стимуляции, как правило, оказываются весьма длительными за счет свойства нейронной сети пролонгировать возбуждение.

В ретикулярную формацию ствола мозга конвергируют сигналы от разных сенсорных входов. Изучение хода специфических сенсорных волокон в анализаторных системах показало, что во всех случаях часть волокон оканчивается на ретикулярных нейронах. В районе среднего мозга и моста осуществляется прием информации, поступающей от зрительной, слуховой и вестибулярной систем, приход сигналов от соматосенсорной системы более выражен в районе моста. В районе продолговатого мозга имеются нейроны, которые реагируют на болевые раздражения, идущие от мышц и внутренних органов. Таким образом, ретикулярная формация оказывается «информированной» о состоянии всей сенсорной периферии и поэтому является коллектором, где смыкаются и взаимодействуют сигналы от разнообразных рецепторных зон. В связи с этим, заслуживает внимания еще одна интересная особенность нейронов ретикулярной формации. Во-первых, многие из этих нейронов полимодальные, т.е. возбуждаются от разных раздражителей (световые, звуковые, тактильные), во-вторых, нейроны ретикулярной формации лишают афферентный поток специфичности, свойственной данному стимулу. Реакция, в конечном итоге, зависит просто от силы любого раздражителя. Таким образом, нейроны дыхательного центра уже в соответствии со своей локализацией изменяют свою активность в соответствии с любым потоком информации, поступающим в ретикулярную формацию.

Ретикулярная формация имеет прямое отношение к регуляции цикла «бодрствование-сон», поэтому и паттерн дыхания приводится в соответствие и с этим циклом.

Гипоталамус

Существенную роль в регуляции дыхания играет гипоталамус. Основная роль гипоталамуса в изменении паттерна дыхания заключается в том, что ритм дыхания приводится в соответствие с уровнем обмена веществ. Одной из основных особенностей нейронов гипоталамуся является их чувствительность к составу омывающей их крови. Нейроны срединной группы ядер гипоталамуса обладают детектирующей функцией, они реагируют на изменение температуры крови, осмотическую концентрацию, концентрацию глюкозы и аминокислот. Таким образом, в гипоталамус поступает информация о состоянии внутренней среды организма. В гипоталамусе на основании этой информации происходит формирование мотиваций - побуждений к движению, к изменению поведения для того, чтобы восстановить изменившиеся параметры внутренней среды организма. Под влиянием мотивации и при участии коры головного мозга происходит формирование программы конкретного поведения, в которую включается и изменение дыхания.

Особенно велика роль дыхания в терморегуляции, потому что при изменении паттерна дыхания возможно или увеличить, или уменьшить теплоотдачу. При повышении температуры повышается частота дыхания, за счет этого происходит увеличение испарения воды и некоторое охлаждение организма. Умеренное охлаждение тоже приводит к увеличению частоты дыхания. Это связано с возбуждением задних областей гипоталамуса и общим повышением активности и возбудимости структур мозга, в том числе и дыхательного центра. При значительном охлаждении угнетается активность нейронов дыхательного центра, глубина и частота дыхания уменьшаются, что позволяет уменьшить потери тепла.

Из изложенного становится ясно, что в дыхательный центр, наряду с информацией от хеморецепторов и от рецепторов растяжения легких, поступает поток информации обо всем, что происходит в организме и окружающей среде. Разница заключается в том, что афферентные сигналы от разнообразных рецептивных полей и от анализаторов поступают не непосредственно в дыхательный центр, а в различные отделы головного мозга. Эти отделы, в свою очередь, оказывают возбуждающее или тормозное влияние и на дыхательный центр, и на другие функциональные системы (например, система кровообращения). В различных ситуациях центры головного мозга образуют с дыхательным центром временные функционально подвижные ассоциации (функциональные системы по А.П. Анохину), которые обеспечивают полноценное регулирование дыхания в соответствии с потребностями организма.

Кора больших полушарий

Роль коры больших полушарий в регуляции дыхания изучена в экспериментах на животных с электрическим раздражением различных зон коры и с их удалением. Оказалось, что у бескорковых животных с нормальным дыхательным ритмом в покое наступает резко выраженная и длительная одышка уже после нескольких шагов. Следовательно, для приспособления дыхания к мышечной деятельности требуется участие высших отделов центральной нервной системы. В коре мозга нет определенных участков, четко изменяющих деятельность дыхательного центра. Раздражение большинства участков коры приводит к изменению паттерна дыхания. Вместе с тем, наиболее существенные изменения дыхания наблюдаются при раздражении соматосенсорной области коры. Это и понятно, именно мышечная деятельность требует наиболее существенного изменения дыхания. Во время работы мышцам необходимо очень большое количество кислорода. Если в покое потребление кислорода составляет 250-300 мл/минуту, то при быстрой ходьбе оно возрастает до 2.5 литров, а при тяжелой мышечной работе до 4л/минуту. Обеспечение мышц кислородом достигается совместной деятельностью систем кровообращения и дыхательной. 

Механизмы регуляции вентиляции при мышечной работе сложны. Казалось бы, увеличение МОД можно объяснить повышением частоты импульсов с хеморецепторов продолговатого мозга и каротидных синусов, которое возникает в результате повышения напряжения углекислого газа и снижения напряжения кислорода в крови. Однако вентиляция легких всегда увеличивается в начале работы, когда газовый состав крови еще не успел измениться. Следовательно, гиперпноэ возникает под влиянием нервных факторов. Кора больших полушарий, вызывая произвольные движения, активирует и деятельность дыхательного центра и непосредственно, и через гипоталамус. В дополнение к этой стимуляции возбуждение дыхательного центра увеличивается под влиянием импульсов от проприорецепторов работающих мышц. Эти импульсы возникают даже в тех случаях, когда работа мышц осуществляется пассивно, без затрат кислорода и выделения углекислого газа (например, экспериментатор сгибает конечности испытуемого).

Позднее, во время продолжающейся физической работы, происходит более медленное увеличение вентиляции легких. Это увеличение вентиляции уже обусловлено раздражением артериальных и центральных хеморецепторов. Однако и здесь не все так просто. Выяснилось, что даже при физической работе высокой интенсивности напряжение кислорода и углекислого газа в крови может не измениться (а углекислого газа даже снизиться в результате возросшей вентиляции легких). Даже удаление каротидных телец не устраняет увеличения легочной вентиляции во время физической работы, и тем не менее, сигналы от хеморецепторов имеют существенное значение в увеличении МОД во время физической работы. Оказывается, что во время работы увеличивается чувствительность дыхательного центра к гиперкапнии и гипоксии, возрастает и возбудимость хеморецепторов. Имеет значение и повышение температуры тела: этот фактор через центры гипоталамуса увеличивает частоту дыхания.

Кортикальные влияния на дыхание отчетливо проявляются при тренировке к выполнению одной и той же работы. Постепенно колебания дыхания становятся меньше, дыхание делается более ровным. Если много раз выполняется работа в одинаковом темпе, но с различной интенсивностью, то изменения вентиляции при переходе на новый уровень происходят быстрее, вырабатывается динамический стереотип, в котором вентиляция легких имеет волнообразный характер. Из этого примера видно, что важные приспособительные изменения дыхания осуществляются посредством выработки условных рефлексов. Примером такого условно-рефлекторного изменения ритма дыхания может быть стартовый рефлекс у спортсменов.

Роль высших отделов мозга проявляется и в способности человека и животных оценивать свое «газовое» состояние - гипоксическое или гиперкапническое. Человек не может непосредственно воспринимать содержание кислорода и углекислого газа во вдыхаемом воздухе, потому что нет адекватных рецепторов в дыхательных путях. Однако с помощью метода активного выбора предпочитаемых газовых смесей (этот выбор называется газопреферендум) установлено, что люди избегают дышать смесями, которые вызывают в организме гипоксические или гиперкапнические сдвиги. Например, смеси, содержащие 15 % кислорода, люди не отличали от нормальных, содержащие 12 % вызывали у части людей отрицательную реакцию, а содержащие 9 % кислорода, отвергались всеми испытуемыми. Исследования, проведенные на спортсменах, выявили их способность оценивать не только состав вдыхаемой смеси, но и гипоксические и гиперкапнические сдвиги в своем организме. После спортивной тренировки они могли почти точно определить степень оксигенации своей артериальной крови.

Особенно отчетливо роль коры головного мозга проявляется в произвольном управлении дыханием. Своеобразие функции внешнего дыхания заключается в том, что она одновременно и обладает автоматизмом, и произвольно управляема. Человек прекрасно дышит и во сне, и под наркозом, однако любой человек может произвольно остановить дыхание, изменить его частоту и глубину. Произвольное управление дыханием возможно потому, что в коре есть представительство дыхательных мышц и корковомедуллярные нисходящие влияния на мотонейроны дыхательных мышц. Возможность произвольного управления дыханием ограничена определенными пределами изменений напряжения кислорода и углекислого газа, а так же рН крови. При чрезмерной задержке дыхания возникает стимул, который возвращает дыхание под контроль дыхательного центра. Значение возможности произвольного контроля дыхания для человека трудно переоценить - именно благодаря такой возможности человек приобрел одну из немногих, отличающих его от животных, функций - способность к членораздельной речи.

Заключение

Дыхательный центр получает большой объем информации и о газовом составе крови, и о состоянии дыхательной системы. В соответствии с этой информацией изменяется легочная вентиляция. Вместе с тем дыхательный центр способен обеспечивать смену дыхательных фаз за счет своих собственных механизмов возбуждения нейронов, т.е. обладает определенным автоматией. Автоматия дыхательного центра отличается рядом признаков от автоматии сердечного водителя ритма.

 Периодическое возбуждение дыхательного центра обусловлено взаимодействием большого числа нервных клеток, объединенных в нейронные сети. Среди них особую роль играют тормозные нейроны. В дыхательном центре есть несколько популяций инспираторных и экспираторных нейронов соответственно фазам дыхательного цикла. Среди нейронов есть проприобульбарные нейроны, которые организуют паттерн дыхания, определяя уровнем своего возбуждения длительность фаз дыхательного цикла. Бульбоспинальные нейроны являются преимущественно премоторными по отношению к мотонейронам диафрагмального нерва и нервам межреберных мышц. Смена дыхательных фаз осуществляется путем постепенного возбуждения одних групп нейронов и торможения других. Для осуществления смены дыхательных фаз необходимо влияние пневмотаксического центра, расположенного в районе варолиевого моста среднего мозга.

Для автоматической деятельности дыхательного центра необходимо постоянное (тоническое) поступление к нему сигналов, повышающих возбудимость дыхательных нейронов. Сигналы, поступающие от хеморецепторов продолговатого мозга и каротидного синуса, а так же от рецепторов растяжения легких изменяют активность дыхательных нейронов в соответствии с газовым составом крови и состояние дыхательной системы. Информация от этих рецепторов лежит в основе регуляции по принципу отклонения. Афферентные сигналы, поступающие от всех рецептивных полей через ретикулярную формацию, гипоталамус и кору головного мозга изменяют активность дыхательных нейронов в соответствии с состоянием внутренней среды организма и окружающей среды, поведением. Таким образом, осуществляется регуляция дыхания по принципу возмущения. 

 Автоматическая деятельность дыхательного центра человека находится под значительным произвольным контролем. Человек может в широких пределах произвольно изменять частоту и глубину дыхания. Вместе с тем, этот произвольный контроль ограничен влияниями от центральных и периферических хеморецепторов, рецепторов растяжения легких, ирритантных и других механорецепторов.

Объединим на рисунке 25 основные структуры, принимающие участие в регуляции дыхания и по принципу отклонения, и по принципу возмущения, и суммируем их роль в регуляции дыхания.

Рисунок 25. Отделы головного мозга,

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...