Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Исследование конкретного примера




Летом 1997 года корпорация XYZ (псевдоним) получила значительное количество наличных денег. Это отмечено в колонке 8/17/97 листинга изменения структуры их портфеля, представленного в Таблице 8.1. В портфеле было 54% акций Biotime (тикер BTIM), биотехнологической компании, котирующейся на NASDAQ. Это было связано с существующими и историческими связями между людьми из XYZ Corp. и BTIM. Служащие и руководство XYZ были очень хорошо осведомлены о положении дел в BTIM, и это давало им ощущение того, что они были особенно хорошо подготовлены, для того чтобы оценить компанию как объект инвестирования. Они пожелали и дальше держать значительную позицию по BTIM.

Портфель содержал акции Berkshire Hathaway, тикер BRK, впервые купленные в 1991 году.

(а) Ограничения.

Доктор Quaife определил Кэлли-оптимальный портфель для XYZ Corp. исходя из конкретных ограничений. Список потенциально возможных бумаг был ограничен следующим составом:BTIM, BRK, бумаги индексного фонда Vanguard 500 (S&P 500), казначейские векселя. Позиция шорт по казначейским векселям была использована в качестве демпфера на случай маржинальных долгов. Брокер XYZ кредитовал компанию по ставке на 2% дороже, чем было учтено в анализе. Простая САРМ модель предполагает, что инвестор рассматривает рыночный портфель (здесь замененный на индекс S&P 500 по хорошо известным причинам), а также использует заемные средства и кредитование. Как Quaife, так и автор убеждены, что BRK была и является превосходной альтернативой, а их знания о компании и долгий опыт работы с BRK подтверждают это.

Действия XYZ Corp. была подчинены маржинальным требованиям: 50% сначала и 30% далее, означающие, что портфель ценных бумаг формируется при условии, что первоначальный маржинальный долг (средства, одалживаемые у брокера) ограничен величиной 50% от стоимости бумаг, и что значение величины маржинального долга в дальнейшем не должно превышать 30% от стоимости портфеля, а также ценные бумаги должны продаваться при рассогласовании, чтобы обеспечить соблюдение требования в 30%-ом ограничении.

В дополнение к этому XYZ Corp. желает оставить значительную часть акций BTIM в своём портфеле.

(b) Анализ и результаты

Используя помесячные данные за период 3/31/92 – 6/30/97 (всего 63 месяца) Quaife определил средние, ковариации и т.д. представленные в Таблице 8.1.

Таблица 8.1 Статистики для логарифмов относительных помесячных изменений капитала за период 3/31/92 - 6/30/97.

    Berkshire BioTime SP500 T-bills
Месячное среднее     0.0264   0.0186   0.0146   0.0035  
Стандартное отклонение   0.0582   0.2237   0.0268   0.0008  
Годовое среднее     0.3167   0.2227   0.1753   0.0426  
Стандартное отклонение     0.2016   0.7748   0.0929   0.0028  
Месячные ковариации   Berkshire 0.0034   -0.0021   0.0005   1.2E-06  
    BioTime     0.0500   -0.0001   3.2E-05  
    SP500         0.0007   5.7E-06  
    T-bills             6.7E-07  
Месячные корреляции   Berkshire 1.0000   -0.1581   0.2954   0.0257  
    BioTime     1.0000   -0.0237   0.1773  
    SP500         1.0000   0.2610  
    T-bills             1.0000  

Обратим внимание, что среднее у BRK выше, а стандартное отклонение ниже, чем у BTIM, следовательно, мы ожидаем, что эта бумага будет выделена дальнейшим анализом. Но отметим также, что имеется отрицательная корреляция с BTIM, которая предполагает, что добавление в портфель некоторого количества BTIM к уже имеющейся BRK может оказаться выгодным.

Используя статистику из Таблицы 8.1, Quaife определил нижеследующие оптимальные портфели соответствующие разным условиям заимствования.

 

Таблица 8.2 Составы оптимальных портфелей для различных посылок об условиях заимствования.

Доля ценной бумаги
Наименование   Без заимствования   50% заемных   Неограниченное заимствование  
Berkshire   0.63   1.50   6.26  
BioTimc   0.37   .50   1.18  
S&P 500   0.00   0.00   12.61  
T-bills   0.00   -1.00   -19.04  
Коэффициент роста портфеля
Среднее   0.36   0.62   2.10  
Стандартное отклонение   0.29   0.45   2.03  

Как и ожидалось, BRK важнее и предпочтительнее, чем BTIM, но добавление некоторого количества BTIM дает лучший вариант.

Если предполагается использование неограниченного размера заемных средств, то было бы неразумным выбрать соответствующий этому варианту портфель в Таблице 8.2.

Различные положения, лежащие в основе этого анализа являются только лишь аппроксимациями разных степеней точности: цены на фондовом рынке не меняются непрерывно; пересмотр состава портфеля не может быть непрерывным процессом; стоимость транзакций не равна 0; ставка по заемным средствам больше чем доходность казначейских векселей; в анализе должна использоваться величина прибыли после налогообложения; процесс, формируемый потоком доходностей по бумагам не стационарен, и наши точечные статистические оценки в Таблице 8.1 неустойчивы. Мы также отметили раньше, что так как чрезмерные размеры ставок более опасны, чем недостаточные, использование «дробного Келли» представляется предпочтительным, как в большей степени отражающего неопределенности.

Фактически использованные данные относятся к периоду 1982-1997 гг., который был сильнейший бычим рынком за всю историю. Мы могли бы ожидать снижение доходностей к направлению к средним, поэтому средние в Таблице 8.1 вероятно являются переоцененными для ближайшего будущего. Ряды данных неизбежно коротки из-за ограниченности информации по BTIM, что вносит дополнительную неопределенность. Для оценки чувствительности Quaife использовал традиционные (среднее, стандартное отклонение) оценки для относительных изменений цен (не для их логарифмов): у BRK (1,15;0,20), у BTIM (1,15;1,0), а у S&P 500 (1,125;0,204) за период 1926-95 по информации из Ibbotson (1996), а также корреляции из Таблицы 8.1. Результат - доли 1,65; 0,17; 0,18 и –1,00 для BRK, BTIM, S&P 500 и T-bills. Средняя величина коэффициента роста была 0,19, а стандартное отклонение 0,30.

(с) Рекомендации и результат.

На дату 8/17/97 совету директоров компании XYZ Corp. было рекомендовано формирование портфеля с использованием 50% маржинального кредитования и могло бы быть осуществлено немедленно. Совет директоров выбрал бездействие. На 10/9/97 (как показало время, была хорошая возможность продать по выгодной цене) они продали некоторое количество BTIM и оставили эти средства в наличности (что неправильно).

В заключении 2/9/98 после обсуждения как с Quaife, так и с автором они купили 10 BRK (в связи с чем получая почти $140000 к 3/31/98, как и произошло). В Таблице 8.3 представлены реальные результаты инвестиционной политики, которая привела к росту на 73%. Таблица 8.4 показывает, что бы произошло при использовании рекомендованной курса без перетряски портфеля и с одной перетряской на дату 10/6/97. Доходность составила бы 117,6% и 199,4% соответственно. Прирост прибыли для этих стратегий над результатами субоптимальной политики совета директоров выражается в дополнительных $475935 и $1359826 соответственно.

Оптимальная стратегия показывает три важных особенности в этом примере: применение кредитного плеча, определение первичной структуры портфеля, и возможная «перетряска» (изменение состава портфеля) через какое-то время. Каждая из этих особенностей потенциально важна в определении конечного результата. Возможное воздействие непрерывной во времени перетряски портфеля с целью достижения максимальной прибыли продемонстрировано в Thorp and Kassouf (1967), Appendix A, The Avalanche Effort.

Размеры существенных убытков от субоптимальной стратегии были гораздо больше, чем ожидались, потому что цены BRK и BTIM удивительно сильно выросли. За 0,62 года, BRK вырос на 60,4%, а BTIM – на 62,9%. Это говорит нам, что (не типично) в отсутствии перетрясок первоначальные относительные пропорции BRK и BTIM не имели большого значения на тот период времени. Однако, перетряска портфеля для изменения относительных пропорций BRK и BTIM было важно, как это было показано в случае продажи некоторого количество BTIM по результатам фактической инвестиционной политики. Перетряска была также важна для регулировки величины заемных средств, когда, например, в нашем случае цены быстро росли.

Таблица 8.2 показывает, что мы могли бы обычно ожидать большую прибыль с использованием 50% заемного капитала, чем без него. Мы ожидаем разницу между значениями медиан распределений портфелей в размере $1080736[exp(0,62*0,62)- exp(0,36*0,62)]=$236316 или 21,9%, который является все еще большим.

(d) Теория портфеля ценных бумаг.

Рассмотрим сперва неограниченный случай с безрисковой бумагой (казначейские векселя) с долей в портфеле f0 и n ценными бумагами с долями в портфеле f1,.., fn. Предположим, что ставка доходности по безрисковому активу r, и, для простоты обсуждения, такое же значение примем для ставок заимствования, кредитования и ставки уплачиваемой при открытии коротких позиций. Пусть C=(sij)- ковариационная матрица с элементами sij, i, j=1,..,n представляющие собой ковариации между i и j бумагами, а M=(m1,m2,..mn)T вектор строка, такой что mi, i=1,..,n будут уровни смещения i-ой бумаги.

Тогда портфель удовлетворяет соотношениям

где FT=(f1,..fn) со знаком T означает транспонирование, а R – вектор-столбец (r,r,..r)T длиной n.

Тогда наши предыдущие формулы и результаты для одной бумаги и одного безрискового актива приводят к g¥(f1,..fn)=m-s2/2. Это стандартная задача оптимизации квадратичного программирования. Используя (8.1) и решая одновременные уравнения ∂g¥/∂ fi=0, i=1,..,n, мы получаем

где для удовлетворения требования единственности решения мы требуем существования С –1, то есть detC≠0. Когда все бумаги не коррелированны, то С диагональна и мы получаем f *=(mi – r)/sii или f *=(mi – r)/si2, что соответствует (7.3) для n=1.

Примечание: BRK эмитировала новый тип непривилегированных акций с тикером BRK.B c одновременным изменением символа для старого типа на BRK.A. Одна акция BRK.A может быть конвертирована в 30 акций BRK.В в любое время, но не наоборот. Право голоса BRK.В имеет меньшее значение, а также отсутствуют право участия в назначении величины ежегодных благотворительных выплат. Мы вслед за рынком рассматриваем эти различия как незначительные, и согласно этому А торгуется по цене примерно в 30 раз превышающей котировку В.

Если бы отношение было всегда в точности 30 к 1, а также обе эти бумаги были бы включены в анализ, то они имели бы одинаковое значения ковариаций с другими бумагами, так что С=0 и C-1 не существует.

Если существует ограничение на используемый маржинальный капитал с размером доли q, 0 ≤ q ≤ 1, тогда у нас появиться дополнительное ограничение

Подмножество с размерностью n замкнуто и ограничено.

Если ставка по заемным средствам для обеспечения портфеля rb=r+eb, eb≥ 0, а ставка комиссии по коротким позициям rs=r+es, es≥ 0, тогда m в уравнении (8.1) изменяется. Обозначим x+=max(x,0) а, x -=max(0,-x), так что x=x+- x для всех x. Примем f +=f1++…+fn+ за долю портфеля размещенную в длинных позициях. И пусть f -=f1-+…+fn- - это доля портфеля размещенная в коротких позициях.

Случай 1. f +≤ 1

Случай 2. f +>1

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...