Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Статистические оценки




Определение: Точечной оценкой называют оценку, которая определяется одним числом. Все оценки, рассмотренные выше, являются точечными.

При выборке малого объема точечная оценка может значительно отличаться от оцениваемого параметра, т.е. приводить к грубым ошибкам. Поэтому, при небольшом объеме выборки следует пользоваться интервальными оценками.

Определение: Интервальной называют оценку, которая определяется двумя числами – концами интервала. Интервальные оценки позволяют установить точность и надежность оценок.

Пусть - параметр, - найденная по данным выборки статистическая характеристика. Она служит оценкой неизвестного параметра . Ясно, что чем меньше , тем точнее определяется параметр . Другими словами, если и , то чем меньше , тем точнее .

Определение: Вероятность называется надежностью (доверительной вероятностью). Обычно надежность оценки задается заранее, причем в качестве берут число, близкое 1. Наиболее часто задаются надежности 0,95;0,99 и 0,999.

По другому можно записать .

Это соотношение следует понимать так: вероятность того, что интервал заключает в себе (покрывает) неизвестный параметр , равна .

Интервал называется доверительный интервал.

Возможные задачи:

I. Если X распределено нормально, значит параметров 2. Пусть среднее квадратичное отклонение известно. Оценить неизвестное математическое ожидание по выборочной средней.

Найдем , т.е. .

Решение основано на формуле

Заменим в этой формуле через . В результате несложных преобразований, получается

где .

Число определяется из по таблице функции Лапласа.

Замечание: 1) при возрастании объема выборки n число убывает, следовательно, точность оценки увеличивается.

2)при увеличении надежности оценки, т.е. , t – возрастает, т.к. возрастающая функция, а значит - возрастает. Следовательно, увеличение надежности влечет за собой уменьшение ее точности.

II. Пусть X распределено нормально и среднее квадратичное отклонение неизвестно. Оценить неизвестное математическое ожидание при помощи доверительных интервалов.

,

где s – исправленное среднее квадратичное значение, а = ищется по приложению 3 по и n.

III. Пусть X распределено нормально. Требуется оценить по исправленному выборочному среднему отклонению s, т.е.

,

где - ищется по приложению 4.

Поделиться:





Читайте также:





Воспользуйтесь поиском по сайту:



©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...