Движение некоторых тел сопровождается изменением их массы, например масса ракеты уменьшается вследствие истечения газов, образующихся при сгорании топлива, и т. п.
Выведем уравнение движения тела переменной массы на примере движения ракеты. Если в момент времени t масса ракеты т, а ее скорость v, то по истечении времени At ее масса уменьшится на dm и станет равной т—dm, а скорость станет равной v + dv. Изменение импульса системы за отрезок времени At Где u — скорость истечения газов относительно ракеты. Тогда (учли, что dmdv — малый высшего порядка малости по сравнению с остальными). Если на систему действуют внешние силы, то dp = Fdt, поэтому Или (10.1) Второе слагаемое в правой части (10.1) называют реактивной силой Fp. Если о противоположен v по направлению, то ракета ускоряется, а если совпадает с v, то тормозится. Таким образом, мы получили уравнение движения тела переменной массы (10.2) Которое впервые было выведено И. В. Мещерским (1859—1935). Идея применения реактивной силы для создания летательных аппаратов высказывалась в 1881 г. Н. И. Кибальчичем (1854—1881). К. Э. Циолковский (1857—1935) в 1903 г. опубликовал статью, где предложил теорию движения ракеты и основы теории жидкостного реактивного двигателя. Поэтому его считают основателем отечественной космонавтики. Применим уравнение (10.1) к движению ракеты, на которую не действуют никакие
внешние силы. Полагая F = 0 и считая, что скорость выбрасываемых газов относительно ракеты постоянна (ракета движется прямолинейно), получим Откуда Значение постоянной интегрирования С определим из начальных условий. Если в начальный момент времени скорость ракеты равна нулю, а ее стартовая масса т0, то Следовательно, (10.3) Это соотношение называется формулой Циолковского. Она показывает, что: 1) чем больше конечная масса ракеты т, тем больше должна быть стартовая масса ракеты т0 2) чем больше скорость истечения и газов, тем больше может быть конечная масса при данной стартовой массе ракеты.
Выражения (10.2) и (10.3) получены для нерелятивистских движений, т. е. для случаев, когда скорости v и u малы по сравнению со скоростью с распространения света в вакууме.
Глава 3 Работа и энергия Энергия, работа, мощность Энергия — универсальная мера различных форм движения и взаимодействия. С различными формами движения материи связывают различные формы энергии: механическую, тепловую, электромагнитную, ядерную и др. В одних явлениях форма движения материи не изменяется (например, горячее тело нагревает холодное), в других — переходит в иную форму (например, в результате трения механическое движение превращается в тепловое). Однако существенно, что во всех случаях энергия, отданная (в той или иной форме) одним телом другому телу, равна энергии, полученной последним телом. Изменение механического движения тела вызывается силами, действующими на него со стороны других тел. Чтобы количественно характеризовать процесс обмеиа энергией между взаимодействующими телами, в механике вводится понятие работы силы. Если тело движется прямолинейно и на него действует постоянная сила F, которая составляет некоторый угол с направлением перемещения, то работа этой силы равна произведению проекции силы Fs, на направление перемещения умноженной на перемещение точки приложения силы: (11.1) В общем случае сила может изменяться как по модулю, так и по направлению, поэтому формулой (11.1) пользоваться нельзя. Если, однако, рассмотреть элементарное перемещение то силу F можно считать постоянной, а движение точки ее приложения — прямолинейным. Элементарном работой силы F на перемещении называется скалярная величина где — угол между векторами — элементарный путь; Fs — проекция
вектора F на вектор dr (рис. 13). Работа силы на участке траектории от точки / до точки 2 равна алгебраической сумме элементарных работ на отдельных бесконечно малых участках пути. Эта сумма приводится к интегралу (11.2) Для вычисления этого интеграла надо знать зависимость силы Fs от пути s вдоль траектории /— 2. Пусть эта зависимость представлена графически (рис. 14), тогда
искомая работа А определяется на графике площадью заштрихованной фигуры. Если, например, тело движется прямолинейно, сила то получим где s— пройденный телом путь (см. также формулу (11.1)). Из формулы (11.1) следует, что при работа силы положительна, в этом случае составляющая Fs совпадает по направлению с вектором скорости движения v (см. рис. 13). Если то работа силы отрицательна. При (сила направлена перпендикулярно перемещению) работа силы равна нулю. Единида работы — джоуль (Дж): 1 Дж — работа, совершаемая силой 1 Н на пути 1 м(1 Дж=1 Н м). Чтобы охарактеризовать скорость совершения работы, вводят понятие мощности: (11.3) За время dt сила F совершает работу Fdr, и мощность, развиваемая этой силой, в данный момент времени т. с. равна скалярному произведению вектора силы на вектор скорости, с которой движется точка приложения этой силы; N — величина скалярная. Единица мощности — ватт (Вт): 1 Вт — мощность, при которой за время 1 с совершается работа 1 Дж (1 Вт= 1 Дж/с).
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|