Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Кинетическая энергия вращения




Рассмотрим абсолютно твердое тело (см. § 1), вращающееся около неподвижной оси z, проходящей через него (рис. 24). Мысленно разобьем это тело на маленькие объемы с элементарными массами m1, т2,..., mn, находящиеся на расстоянии г1, r2 г ,..., rn,от оси.

При вращении твердого тела относительно неподвижной оси отдельные его элементар­ные объемы массами mi опишут окружности различных радиусов гi, и имеют различные

линейные скорости Но так как мы рассматриваем абсолютно твердое тело, то угловая скорость вращения этих объемов одинакова:

(17.1)

Кинетическую энергию вращающегося тела найдем как сумму кинетических энер­гий его элементарных объемов:

или Используя выражение (17.1), получаем

где — момент инерции тела относительно оси z. Таким образом, кинетическая энергия вращающегося тела

(17.2)

Из сравнения формулы (17.2) с выражением (12.1) для кинетической энергии тела, движущегося поступательно следует, что момент инерции — мера инерт-

ности тела при вращательном движении. Формула (17.2) справедлива для тела, вращающегося вокруг неподвижной оси.

В случае плоского движения тела, например цилиндра, скатывающегося с наклон­ной плоскости без скольжения, энергия движения складывается из энергии поступатель­ного движения и энергии вращения:


 



 

 

где т — масса катящегося тела; — скорость центра масс тела; — момент инер­ции тела относительно оси, проходящей через его центр масс; — угловая скорость тела.

§ 18. Момент силы. Уравнение динамики вращательного движения твердого тела

Момеятом силы F относительно неподви жвой точки О называется физическая величина, определяемая векторным произведением радиуса-вектора г, проведенного из точ­ки О в точку А приложения силы, на силу F (рис. 25):

Здесь М — псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от г к F. Модуль момента силы

(18.1)

где — угол между г и F; — кратчайшее расстояние между линией действия

силы и точкой О — плечо силы.

Моментом силы относительно неподвижной оси z называется скалярная величина равная проекции на эту ось вектора М момента силы, определенного относительно произвольной точки О данной оси z (рис. 26). Значение момента не зависит от выбора положения точки О на оси z.

Если ось z совпадает с направлением вектора М, то момент силы представляется в виде вектора, совпадающего с осью:

Найдем выражение для работы при вращении тела (рис. 27). Пусть сила F приложе­на в точке В, находящейся от оси z на расстоянии — угол между направлением силы и радиусом-вектором г. Так как тело абсолютно твердое, то работа этой силы равна работе, затраченной на поворот всего тела. При повороте тела на бесконечно малый угол точка приложения В проходит путь и работа равна произведе-

нию проекции силы на направление смещения на величину смещения:

(18.2)




 

Учитывая (18.1), можем записать

где — момент сипы относительно оси X. Таким образом, работа при

вращении тела равна произведению момента действующей силы на угол поворота. Работа при вращении тела идет на увеличение его кинетической энергии: dA=dT,

но поэтому

Учитывая, что получаем

(18.3)

Уравнение (18.3) представляет собой уравнение динамики вращательного движения твердого тела относительно неподвижной оси.

Можно показать, что если ось z совпадает с главной осью инерции (см. § 20), проходящей через центр масс, то имеет место векторное равенство

(18.4) где J — главный момент инерции тела (момент инерции относительно главной оси).

§ 19. Момент импульса и закон его сохранения

При сравнении законов вращательного и поступательного движений просматривается аналогия между ними, только во вращательном движении вместо силы «выступает» ее момент, роль массы «играет» момент инерции. Какая же величина будет аналогом импульса тела? Ею является момент импульса тела относительно оси.

Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произ­ведением:

где г — радиус-вектор, проведенный из точки О в точку A; p=mv — импульс мате­риальной точки (рис. 28); L — псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от г к р. Модуль вектора момента импульса

где — угол между векторами г и р, l — плечо вектора р относительно точки О. Моментом импульса относительно неподвижной оси z называется скалярная величина равная проекции на эту ось вектора момента импульса, определенного относитель-




 


но произвольной точки О данной оси. Момент импульса не зависит от положения

точки О на оси z.

При вращении абсолютно твердого тела вокруг неподвижной оси z каждая отдель­ная точка тела движется по окружности постоянного радиуса с некоторой скоро­стью Скорость и импульс перпендикулярны этому радиусу, т. е. радиус является плечом вектора Поэтому можем записать, что момент импульса отдель­ной частицы равен

(19.1)

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...