Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Являются тела, находящиеся в космических кораблях, свободно движущихся в космосе.





§ 24. Поле тяготения и его напряженность

Закон тяготения Ньютона определяет зависимость силы тяготения от масс взаимодей­ствующих тел и расстояния между ними, но не показывает, как осуществляется это взаимодействие. Тяготение принадлежит к особой группе взаимодействий. Силы тяго­тения, например, не зависят от того, в какой среде взаимодействующие тела находятся. Тяготение существует и в вакууме.

Гравитационное взаимодействие между телами осуществляется с помощью поля тяготения, или гравитационного поля. Это поле порождается телами и является формой существования материи. Основное свойство поля тяготения заключается в том, что на всякое тело массой т, внесенное в это поле, действует сила тяготения, т. е.

(24.1)

Вектор g не зависит от т и называется напряженностью поля тяготения. Напряженность поля тяготения определяется силой, действующей со стороны поля на материальную точку единичной массы, и совпадает по направлению с действующей силой. Напряжен­ность есть силовая характеристика поля тяготения.

Поле тяготения называется однородным, если его напряженность во всех точках одинакова, и центральным, если во всех точках поля векторы напряженности направ­лены вдоль прямых, которые пересекаются в одной точке (А), неподвижной по отноше­нию к какой-либо инерциальной системе отсчета (рис. 38).

Для графического изображения силового поля используются силовые линии (линии напряженности). Силовые линии выбираются так, что вектор напряженности поля направлен по касательной к силовой линии.

§ 25. Работа в поле тяготения. Потенциал поля тяготения

Определим работу, совершаемую силами поля тяготения при перемещении в нем материальной точки массой т. Вычислим, например, какую надо затратить работу для удаления тела массой т от Земли. На расстоянии R (рис. 39) на данное тело действует сила

При перемещении этого тела на расстояние dR совершается работа

(25.1)

Знак минус появляется потому, что сила и перемещение в данном случае проти­воположны по направлению (рис. 39).

Если тело перемещать с расстояния то работа




 


(25.2)

Из формулы (25.2) вытекает, что затраченная работа в поле тяготения не зависит от траектории перемещения, а определяется лишь начальным и конечным положениями тела, т. е. силы тяготения действительно консервативны, а поле тяготения является потенциальным (см. § 12).

Согласно формуле (12.2), работа, совершаемая консервативными силами, равна изменению потенциальной энергии системы, взятому со знаком минус, т. е.

Из формулы (25.2) получаем

(25.3)

Так как в формулы входит только разность потенциальных энергий в двух состоя­ниях, то для удобства принимают потенциальную энергию при равной нулю Тогда (25.3) запишется в виде Так как первая точка была

выбрана произвольно, то

Величина

является энергетической характеристикой поля тяготения и называется потенциалом. Потенциал пола тяготения — скалярная величина, определяемая потенциальной энер­гией тела единичной массы в данной точке поля или работой по перемещению единичной массы из данной точки поля в бесконечность. Таким образом, потенциал поля тяготения, создаваемого телом массой М, равен

(25.4)

где R — расстояние от этого тела до рассматриваемой точки.

Из формулы (25.4) вытекает, что геометрическое место точек с одинаковым потен­циалом образует сферическую поверхность Такие поверхности, для которых потенциал постоянен, называются эквипотенциальными.

Рассмотрим взаимосвязь между потенциалом поля тяготения и его напряжен­ностью (g). Из выражений (25.1) и (25.4) следует, что элементарная работа d А, совершаемая силами поля при малом перемещении тела массой т, равна

С другой стороны, (dl — элементарное перемещение). Учитывая (24.1), полу-

чаем, что или




 


Величина характеризует изменение потенциала на единицу длины в направлении

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...