Возбудительно-тормозные отношения в спинном мозгу
Рефлекторные механизмы спинного мозга обеспечивают координационную деятельность соматической мускулатуры, которая достигается возбуждением одной и торможением другой антагонистической группы мышц. А такое распределение флексорных и экс-тензорных мышечных реакций, в свою очередь, вызывается возбудительно-тормозным взаимодействием на уровне спинальных центров, чем обусловливается ре-ципрокная иннервация (Шеррингтон). В соответствии с принципом реципрокной иннервации мышцы и ин-нервирующие их мотонейроны распределяются на две группы: флексоров и экстензоров, которые при рефлекторном координационном акте находятся в противоположных функциональных состояниях. Видимо, для каждой группы нейромоторных единиц существует объединяющий их координационный механизм, обеспечивающий одновременное начало и конец возбуждения (и сокращения) в одной мышечной группе, равно как и торможения (и расслабления) в другой -антагонистической. Определенную роль в этих интег-рациях должны играть и проприорецепторы, обеспечивающие в системе обратную связь (рис. 4.2). Рис. 4.2. Схема главных видов действия двигательных путей спинного мозга (Шмидт, Тевс, 1983) Основой реципрокной иннервации является процесс торможения. Однако роль его в координационных механизмах существенно шире. Торможение может выступать не только как реципрокное, но и как общее. Оно может захватывать весь спинной мозг, включая и центры головного мозга. Общее торможение может вызываться вполне адекватными раздражениями разных сенсорных систем; в этом случае оно обеспечивает концентрацию возбуждения в определенных группах интер- и мотонейронов, что приводит к избирательному реагированию определенных рабочих органов.
В развитии общего торможения, по-видимому, существенную роль играет желатинозная субстанция Роландо, мелкие клетки которой в пределах одного сегмента спинного мозга связываются между собой короткими аксонами, а длинные аксоны некоторых желатинозных клеток входят в состав тракта Лиссау-эра и на разных уровнях спинного мозга снова оканчиваются на желатинозных клетках. Так образуются проприоспинальные пути, через которые связываются желатинозные клетки разных сегментов (Сентаго-таи). Таким путем обеспечивается иррадиация возбуждения по желатинозной субстанции вдоль спинного мозга, а через заднюю комиссуру — и на контралате-ральную часть сегмента. Ряд экспериментальных данных указывает и на тормозящую функцию желатинозных нейронов. При этом особенности строения и связей желатинозной субстанции при активации любого ее участка могут вполне обеспечить общее торможение спинного мозга. После общего торможения возникает общее облегчение, так же, как и после реципрокного торможения облегчается деятельность заторможенных мышц-антагонистов. Облегчение после торможения было впервые описано И. М. Сеченовым, а впоследствии под названием отдачи изучено Шеррингтоном с сотрудниками. Чистая реципрокная иннервация антагонистических мышц лучше всего наблюдается на спинальных препаратах при действии несильного раздражителя на однородные элементы одного рецептивного поля. Обычно же мотонейроны в результате конвергенции на их входах разных волокон от различных рецептивных полей испытывают одновременно и возбудительные, и тормозные влияния, и тогда соответствующие мышцы дают «заторможенное сокращение» (Шеррингтон), которое может иногда возникнуть и при пороговых раздражениях нервных стволов. Двойственная иннервация обеспечивает дифференцированное протекание ряда рефлексов. Так, благодаря разной возбудимости нервных волоксн, при слабых раздражениях может активироваться один координационный аппарат, приводящий к «чистому» возбуждению или торможению определенных мышечных центральных механизмов; при сильных же раздражениях, вовлекающих в реакцию все (или многие) волокна, вызывается активное состояние многих рефлекторных аппаратов, в результате чего двигательные ядра начинают одновременно испытывать и возбуждение, и торможение, что особенно ярко выявляется в электрофизиологических исследованиях феноменов посттета-нической потенциации и посттетанической депрессии переднекорешковых потенциалов при изменении режимов стимуляции задних корешков спинного мозга.
Спинальные рефлексы Спинной мозг является центром ряда рефлексов. Основные — это проприоцептивные рефлексы: моно-, би- и полисинаптические сухожильные и миостатичес-кие, хотя немалую роль играют и кожные, и висцеральные. Некоторые спинномозговые рефлексы имеют характер ритмических (чесательный, шагательный и др.), в основе которых лежат реципрокные отношения в спинальных мотонейронных пулах и феномен отдачи. Мышечные рефлексы обеспечивают быстрые движения (фазные рефлексы) и изменение и поддержание позы (тонические); эти рефлексы могут возникать от проприо- и экстероцепторов кожи, поддерживаются же они благодаря связи от проприоцепторов. В ряде случаев спинальные рефлексы протекают настолько константно, что изменение и выпадение их может являться диагностическим тестом состояния спинного мозга. В спинном мозгу локализован также ряд эффекторных центров, осуществляющих вегетатив- ные функции — сосудодвигательные, потоотделитель-ные, мочеполовые, дефекационные и др. (табл. 4.1). Таблица 4.1 Спинномозговые рефлексы человека (Бабский и др., 1966)
Таким образом, спинной мозг, являясь главным исполнительным отделом центральной нервной системы, в то же время участвует в первичной обработке про-прио-, висцеро- и экстероцептивных кожных сигналов, осуществляет координационно-интегративную рефлекторную функцию на сегментарном уровне и обеспечивает обратную афферентацию от проприоцептивного аппарата к управляющим структурам головного мозга. 5. Ствол мозга Ствол мозга — это часть головного мозга, включающая в себя продолговатый мозг, варолиев мост, средний мозг, мозжечок, промежуточный мозг с гипофизом и эпифизом. Здесь находятся ядра черепно-мозговых нервов, структуры ретикулярной формации, ядерные образования, имеющие отношение к осуществлению широкого круга рефлекторных реакций соматического и вегетативного обеспечения высших функций центральной нервной системы. Кроме того, через ствол мозга проходят восходящие и нисходящие пути, связывающие его со спинным и головным мозгом. Таким образом, ствол мозга теряет свойство метамерности, характеризующее спинной мозг, и представляет собой систему специализированных ядерных образований.
5.1. Продолговатый мозг Продолговатый мозг — самая каудальная часть ствола мозга, расположен между спинным мозгом и варолиевым мостом. В продолговатом мозгу расположены ядра V—XII пар черепно-мозговых нервов, разделенные проводящими путями, проходящими через продолговатый мозг как в восходящем, так и в нисходящем направлении. П. Г. Костюк (1977) счи- тает ядра черепно-мозговых нервов в определенной степени гомологичными слиналъным двигательным центрам. Характерной структурой продолговатого мозга является ретикулярная формация — скопление нейронов со специфическими свойствами, основная масса которых занимает центральную часть продолговатого мозга. В нижней части продолговатого мозга с дорсальной его стороны находятся ядра нежного и клиновидного канатиков (Голля и Бурдаха). Латеральнее последних находятся оливы. Функции продолговатого мозга чрезвычайно разнообразны. Рефлексы, осуществляемые его структурами, можно разделить на вегетативные, соматические, рефлексы реализации сенсорных функций (вкус, слух, вестибулярная рецепция). Отдельно выделяются функции продолговатого мозга, обусловленные наличием в нем ретикулярной формации и связанные с регуляцией дыхания, сердечно-сосудистой деятельностью и тоническими влияниями на спинной мозг и кору больших полушарий. 5.1.1. Вегетативные рефлексы Вегетативные рефлексы продолговатого мозга осуществляются ядрами, имеющими отношение к парасимпатической системе. Наибольшим является ядро блуждающего нерва, состоящее из отдельных подразделений, направляющих аксоны своих нейронов к большей части внутренних органов (сердцу, пищеварительному тракту, органам дыхания, крупным пищеварительным железам и др.)- Волокна блуждающего нерва в отношении органов брюшной и грудной полости являются как двигательными (для гладкой мускулатуры), так и секреторными (для железистых тканей и органов). Эффекты влияния блуждающего нерва на гладкую мускулатуру кишечника, желудка, желчных путей проявляются в сокращении мускулатуры их стенок и расслаблении сфинктеров, что влечет за собой опорожнение этих органов. Широко известен вагусный эффект на сердце — замедление ритма (вплоть до остановки сердца) и уменьшение силы сокращений сердечной мышцы. Под воздействием вагусных влияний происходит сужение бронхов (брон-хоспазм). Секреторные влияния блуждающего нерва проявляются в усилении секреции бронхиальных, желудочных, кишечных желез, в возбуждении секреции поджелудочной железы, печеночных клеток.
Секреторный аппарат трех пар крупных слюнных желез (околоушных, подчелюстных и подъязычных) активируется парасимпатическими частями ядер лицевого и языкоглоточного нервов, при этом имеет место выделение водянистого секрета, в то время как симпатические влияния способствуют секреции вязкой слюны. 5.1.2. Соматические рефлексы Рефлексы этой группы направлены на восприятие, переработку и проглатывание пищи, а также на поддержание позы животного. Сюда же относятся и некоторые защитные рефлексы. Группа защитных рефлексов и рефлексов пищевого поведения связана с деятельностью ядер тройничного нерва (иннервация жевательной мускулатуры), языкоглоточного нерва (иннервация мускулатуры глотки и языка), лицевого нерва (иннервация мимической мускулатуры лица), соматического двигательного ядра блуждающего нерва (иннервация гортани), добавочного и подъязычного нервов (иннервация мышц шеи). Функция защитных рефлексов (как видно из их названия) — обеспечивать нормальную работу входных отделов дыхательной и пищеварительной систем и глаз путем отвергания повреждающих агентов. Это рефлексы рвоты, чихания, кашля, слезоотделения и замыкания век. Рефлексы пищевого поведения -- глотание, сосание, жевание, слюноотделение, так же, как и защитные, представляют собой достаточно сложную и детерминированную последовательность включения отдельных мышечных групп головы, шеи, грудной клетки и диафрагмы. Они запускаются при раздражении рецепторов слизистой ротовой и носовой полости, глотки и гортани за счет возбуждения чувствительных веточек тройничного, языкоглоточного и блуждающего нервов. Большинство этих рефлексов могут осуществляться без участия вышележащих отделов центральной нервной системы. Это следует из наблюдений над анэнцефала-ми, у которых в результате дефектов развития отсутствует передний мозг. Даже в таких случаях указанные рефлексы проявляются практически в том же объеме, что и у нормальных детей. Среди соматических рефлексов продолговатого мозга особо выделяются так называемые рефлексы поддержания позы, часто называемые магнусовскими по имени автора, детально их описавшего (1929). Осуществление этих рефлексов связано с одним из наиболее крупных ядер продолговатого мозга -- ядром преддверно-улиткового нерва. Это ядро состоит из нескольких подразделений, имеющих различие проекций и различные функции. Чувствительное верхнее вестибулярное ядро (Бехтерева) получает импуль-сацию от рецепторов преддверия улитки и полукружных каналов. Латеральное и медиальное вестибулярные ядра (Дейтерса и Швальбе) дают нисходящие пути в виде вестибулоспиыального тракта, оканчивающегося в медиальных участках переднего рога спинного мозга и частично на мотонейронах. Вести-
булярный тракт оказывает возбуждающее действие на а- и у-мотонейроны разгибателей и тормозное — на мотонейроны сгибателей. Именно с этим связано преобладание разгибательного тонуса в условиях деце-ребрационной ригидности (см. далее). При возбуждении рецепторов преддверия улитки и полукружных каналов возникают соответственно следующие разновидности рефлексов — статические и статокинетические. Статические рефлексы направлены на изменение тонуса скелетных мышц при изменении положения тела в пространстве, а также на перераспределение тонуса мышц, направленное на восстановление нормальной позы, если животное выведено из нее. Причем во втором случае статические вестибулярные рефлексы выступают в качестве пускового механизма, вовлекающего в процессе восстановления нормальной позы вначале голову животного, а затем за счет включения шейных тонических рефлексов спинного мозга и все туловище. Это достаточно убедительно продемонстрировано Магнусом с помощью рапидной съемки движений кошки в процессе падения с высоты спиной вниз. Статокинетические рефлексы обеспечивают сохранение позы животного в условиях изменения скорости его прямолинейного движения" либо вращения. Как уже указывалось, осуществление этих рефлексов связано с рецепторами полукружных каналов. Взаиморасположение полукружных каналов в плоскостях, близких к фронтальной, сагиттальной и горизонтальной, обеспечивает включение тех или иных рецепторов при всех возможных направлениях перемещения тела в трехмерном пространстве. И поскольку траектория движения тела животного и человека в реальном двигательном поведении чаще всего охватывает все три плоскости, то в процесс возбуждения вовле- каются рецепторы всех каналов, и корригирующие влияния вестибулярных ядер распространяются практически на всю мускулатуру тела. Хорошей иллюстрацией вестибулярных механизмов регуляции тонуса мускулатуры может служить изучение нистагма рефлекторного движения глазных яблок в условиях круговых движений с ускорением, как это делается при исследованиях людей на центрифуге. Дело в том, что при определенной позе человека и установке головы так, чтобы горизонтальные полукружные каналы находились в плоскости вращения, можно наблюдать в «чистом виде» горизонтальный нистагм. В этой ситуации в момент начала вращения (положительное ускорение) глазные яблоки начинают отклоняться в сторону, противоположную движению, затем быстрым скачком они возвращаются в исходное положение, затем все повторяется. Такие движения глазных яблок будут продолжаться до тех пор, пока длится ускорение. При равномерном вращении эти рефлекторные движения исчезают. При замедлении вращения наблюдаются обратные движения глазных яблок. Заметим, что возбуждение вестибулярного аппарата часто сопровождается вегетативными реакциями за счет вовлечения в процесс возбуждения вегетативных центров, в том числе ядер вагуса. Проявление «морской болезни* связывается именно с таким механизмом. В реализации сенсорных функций продолговатого мозга принимают участие чувствительные ядра тройничного, лицевого (кожная), языкоглоточного и блуждающего нервов (вкусовая рецепция) и ядра слухового нерва (функция слуха). Детально механизм формирования кожной чувствительности, функции вкуса и слуха рассматриваются в специальном курсе «Физиология сенсорных систем», поэтому здесь мы не останавливаемся подробно на их изучении. 5.1.3. Ретикулярная формация Под ретикулярной формацией обычно понимают клеточную массу, лежащую в толще мозгового ствола от нижних отделов продолговатого до промежуточного мозга. Эта клеточная масса слабо структурирована, ке имеет четких границ, внутри ретикулярной формации вкраплены чувствительные и двигательные ядра продолговатого, среднего и промежуточного мозга. Исследование нейронного строения ствола мозга показало, что все ядерные образования можно разделить на три категории, в зависимости от того, насколько четко они отдифференцированы от ретикулярной формации. Наиболее отчетливо выделяются ядра III, IV, VI, XII нервов. Слабее отдифференцированы ядра V, VII и вентральное ядро X нервов. Практически не Нейроны ретикулярной формации характеризуются немногочисленными длинными, прямыми и маловетвящимися дендритами, шипики слабо дифференцированы, без утолщений на концах. В медиальной части ретикулярной формации расположены так называемые крупные и гигантские клетки, в продолговатом мозгу сконцентрированные в гигантоклеточном ядре. Именно от этих клеток и отходят аксоны, формируя эфферентные пути, в частности, ретикулоспи-нальный тракт, пути к таламусу, мозжечку, базаль-ным ганглиям, коре больших полушарий. Шеррингтоном было высказано предположение, что в ретикулярной формации ствола мозга содержатся системы, которые оказывают влияние на моторную активность (нисходящие влияния). Исследования по- следних лет показали как тормозящее, так и облегчающее влияние ретикулярной формации на а- и у-мо-тонейроны спинного мозга. При этом ретикулоспи-нальные пути, облегчающие активность спинного мозга, берут свое начало от каждого уровня ствола мозга. Пути, тормозящие моторную активность, начинаются преимущественно в бульбарном отделе, и их влияние билатерально. Показано, что ретикуло-спинальные пути, начинающиеся от области вароли-ева моста, тормозят а- и у-мотонейроны сгибателей и активируют мотонейроны разгибателей, в то время как волокна от бульбарного отдела оказывают обратное действие. Электрическая стимуляция обширных областей ретикулярной формации ствола мозга приводит к ритмическим движениям, тремору, нередко сопровождающимся тоническими сокращениями. Эффекты стимуляции, как правило, оказываются весьма длительными. Даже в случае, если ретикулярная формация раздражается в течение десятков миллисекунд, эффект длится секунды. Микроэлектродные исследования выявили, что в этом случае в некоторых мотонейронах развиваются длительные ТПСП, что делает невозможным реакцию данных мотонейронов на другие синаптические влияния. В других же мотонейронах (преимущественно сгибательных) возникают моносинаптические ВПСП. Таким образом, нисходящие влияния ретикулярной формации можно рассматривать с позиций участия этого образования в регуляции общего уровня рефлекторной возбудимости спинного мозга, а также позных рефлексов и простейших движений. В 1935 г. бельгийский нейрофизиолог Бремер опубликовал результаты своих, ставших классическими, экспериментов, давших начало целой главе в физиологии центральной нервной системы (о восходящем влиянии ретикулярной формации). Проводя перерезку ствола мозга на различных уровнях и наблюдая изменения вышележащих отделов головного мозга, в том числе и с помощью электрофизиологических методов, он обнаружил следующее. Если перерезка проведена на уровне среднего мозга между передними и задними бугорками четверохолмия, т.е. основная масса ретикулярной формации остается ниже места перерезки, то такое животное не реагирует на внешние стимулы, а ЭЭГ его напоминает таковую во время сна. Если же перерезка осуществляется между продолговатым и спинным мозгом (связь между ретикулярной формацией и вышележащими отделами сохранена), то животное реагирует на световые, звуковые, обонятельные и тактильные стимулы, а в ЭЭГ присутствует картина, характерная для бодрствующего животного. Первый препарат был назван Бремером изолированным передним мозгом (сегуеаи 1зо1ее), второй — изолированным головным мозгом (епсерЬа!е 18о1ее). Детальное исследование препаратов Бремера самим автором и его последователями привело к установлению факта, что для поддержания активного состояния переднего мозга необходима сенсорная активация в первую очередь ретикулярной формации. Используя методику электростимуляции, Моруцци и Мэгун обнаружили, что при раздражении структур ретикулярной формации удается управлять состоянием животного. Так, если животное находится в сонном состоянии, то наступает его пробуждение. Прекращение стимуляции сопровождается возвращением животного в состояние сна или дремоты. При этом «пробуждение» сопровождается соответствующими изменениями тонуса мускулатуры, вегетативными сдвигами, ориентировочной реакцией, т.е. очень напоминает естественную картину пробуждения от сна. Изучение хода специфических сенсорных волокон в анализаторных системах показало, что во всех случаях часть волокон отправляется в мозговой ствол и там оканчивается на ретикулярных нейронах. Таким образом, ретикулярная формация оказывается «информированной» о состоянии всей сенсорной периферии, являясь коллектором, где смыкаются и взаимодействуют сигналы от разнообразных рецепторных зон. Микроэлектродные исследования выявили некоторые особенности нейронов ретикулярной формации, в частности, неустойчивость фоновой ритмики и полимодальность, т.е. способность одних и тех же нейронов реагировать на разные раздражители (световые, звуковые, тактильные и т.д.). Школой П. К. Анохина показано, что афферентные возбуждения, проходя через ретикулярные нейроны сети, теряют специфичность, свойственную действующему стимулу, и приобретают биологическую специфичность, соответствуя биологическому качеству целостной реакции. Длительное время считалось, что восходящие ретикулокортикальные пути диффузны и их действию подвержена более или менее равномерно вся поверхность больших полушарий. В последнее время все чаще встречаются работы, в которых отмечается некоторая топика распределения ретикулярных восходящих афферентов, оканчивающихся, как известно, в верхних слоях коры. Восходящие ретикулярные влияния на кору носят тонический характер, повышая уровень возбудимости корковых нейронов, не меняя в корне характер их ответов на специфические сигналы. Поскольку активация ретикулярной формации возможна из самых разнообразных источников, а ее восходящие влияния распространяются на обширные области коры, то очевидна роль этой структуры в ориентировочной реакции и межсенсорном взаимодействии. В физиологии широко известен факт повышения чувствительности одной анализаторной системы при стимуляции дру-го.1 (гетеросенсорная стимуляция). Несомненно, что в этом случае роль ретикулярной формации является ведущей. Влияние ретикулярной формации на кору мозга в условиях целостного поведения никогда не бывает изолированным. По современным представлениям, ретикулярная формация ствола мозга входит составной частью в так называемую восходящую неспецифическую систему, в которую включены и неспецифические ядра таламуса. Подробно о функциональной роли этой системы будет сказано дальше. Еще в прошлом веке Флурансом было обнаружено, что в толще продолговатого мозга, в каудальной его части (область писчего пера), имеются зоны, раздражение или повреждение которых приводит к изменению или параличу дыхания. Возникло представление о дыхательном центре как структуре ретикулярной формации мозгового ствола, управляющей дыхательной системой. При этом оказывалось возможным путем прицельной электростимуляции влиять на различные компоненты дыхательного цикла. Таким образом, было определено наличие зон вдоха и выдоха (Н. А. Миславский). Микроэлектродные исследования показали, что здесь имеются нейроны, способные давать периодические залпы активности, ритм которых совпадает с ритмом дыхания. В большинстве случаев залпы этих нейронов синхронизированы с одной из фаз дыхательного цикла — вдохом (инспираторные нейроны) и выдохом (экспираторные нейроны) (рис. 5.1). Описано 8 групп дыхательных нейронов, различающихся по двадцати фазным и частотным параметрам. Дыхательные нейроны, как оказалось, способны к авторитмичности, т.е. они могут давать залпы активности даже в условиях глубокой деафферентации, что связано с определенными свойствами клеточной мембраны и межклеточного взаимодействия близраспо-ложенных нейронов. Эти же исследования привели к заключению о том, что область расположения дыхательных нейронов не может быть очерчена строго и однозначно. Зачастую оказывалось, что рядом могли находиться и дыхательные, и недыхательные нейроны. Таким образом, дыхательные нейроны не образуют морфологически обособленных ядер. Некоторое уплотнение таких нейронов имеется, однако, в области гигантоклеточного и обоюдного ядер. Рис. 5.1. Локализация «дыхательных» нейронов в продолговатом мозгу и пример электрической активности, нейронов дыхательного центра: И — инспираторный; Э — экспираторный нейроны Показана высокая отзывчивость дыхательных нейронов к изменению уровня 02, С0а и рН крови, раздражению механорецепторов самых различных областей (диафрагмы, синокаротидной зоны легких, верхних дыхательных путей, межреберных мышц, кожи и др.). Аксоны почти всех дыхательных нейронов продолговатого мозга проецируются на спинной мозг, перекрещиваются в области границы спинного и про-
долговатого и нисходят в вентральных и латеральных столбах белого вещества в составе ретикулоспи-нальных путей. Подавляющая часть нисходящих волокон оканчивается в шейном отделе, запуская диаф-рагмальный и межреберные нервы, управляющие дыхательной мускулатурой, меньшая часть спускается в грудной отдел спинного мозга. По современным представлениям, дыхательный центр состоит из сети нейронных группировок, взаимодействующих между собой на основе анализа метаболических и механодинамических факторов. В каждой группировке (и инспираторных, и экспираторных нейронов) имеются стартовые нейроны, дающие начало циркуляции возбуждения внутри группировки. Механизм взаимодействия инспираторной и экспираторной частей дыхательного центра до конца еще не выяснен. В. А. Сафонов (1980) полагает возможным рассматривать дыхательный центр состоящим из двух частей: интегрирующей и генераторной. В первой производится обработка поступающей информации и прежде всего хеморецепторов. В результате обработки формируются сигналы, задающие требуемые величины амплитуды, частоты дыхания и другие параметры, имея в виду основную функцию дыхательного центра. Сигналы из интегрирующей части, имеющие непрерывный (непериодический) характер, поступают в генераторную часть, представляющую собой автоматический регулятор ритма. Здесь выходная активность уже имеет вид ритмического процесса, содержащего всю необходимую информацию для управления исполнительным аппаратом дыхательной системы. Как уже было сказано, расположение дыхательного центра в области писчего пера продолговатого мозга было определено еще в прошлом веке. Однако впоследствии было обращено внимание на то, что те или иные изменения дыхания возникают и при нарушениях связей между продолговатым мозгом и варолие-вым мостом. Это связывается с наличием в последнем так называемых пневмотаксического и апнейстичес-кого центров. Было сделано заключение, что центральный дыхательный механизм включает в себя центры в продолговатом мозгу (гаспинг-центр), на уровне слуховых бугорков (апнейстический центр) и в ростральной части варолиева моста (лневмотаксичес-кий центр). Первый является основным, а два последних обеспечивают приспособительные реакции дыхания. Однако есть мнения, что включение этих последних в систему дыхательного центра искусственно, поскольку их дыхательная ритмика вторична и исчезает при разрушении бульбарного отдела. В 1855 г. Шифф высказал предположение о том, что в продолговатом мозгу локализован центр регуляции сосудистых реакций. Дальнейшие работы Ци-она, Людвига и Ф. Овсянникова (1871) подтвердили это, и в физиологии надолго утвердилось представление о бульбарном сосудодвигательном центре как единственном и независимом центре вазомоторной регуляции. И. П. Павлов был одним из критиков такого представления, указывая на важность и спинномозговых и надсегмеятарных структур в осуществлении сосудистых реакций, особенно сочетаемых с другими функциями. Результаты экспериментов по электростимуляции с использованием стереотаксической техники привели к составлению схем расположения прес-сорных и депрессорных зон. Однако оказалось, что полученные разными авторами схемы не вполне совпадают. Одним из объяснений этой несообразности, как полагает А. В. Вальдман, является различие методик, условий экспериментов и трактовки результатов. Так, выяснилось, что раздражение почти всех описанных зон, даже депрессорных, в условиях поверхностного наркоза повышает артериальное давление (АД). Характер системной сосудистой реакции в значительной степени зависит от частоты импульсов во время стимуляции — высокочастотная стимуляция вызывает повышенное давление, а низкочастотная тех же структур приводит к гипотензивному эффекту. По замечанию Шеррера, «прессорные и де-прессорные точки в большинстве областей ретикулярной формации представляются совершенно перемешанными» (1966). Кроме того, раздражение «вазомоторных» зон продолговатого мозга наряду с сосудистыми изменениями сопровождается изменением дыхания, тонуса бронхиол, мышц кишечника, мочевого пузыря, изменением диаметра зрачка. При этом наиболее выраженными и стойкими являются дыхательные эффекты. Использование микроэлектродной техники позволило идентифицировать нейроны, активность которых коррелировала с колебаниями артериального давления. Одни из них учащали свои разряды при подъеме АД, другие — при снижении. И те, и другие обнаружены в одних и тех же структурах продолговатого мозга и моста, чаще в медиальных отделах, в 3-4 мм вентральнее дна IV желудочка. Совмещение микроэлектролного отведения активности нейрона с классическим методом локальной стимуляции в той же точке, откуда отводится нейронная активность, привело к неожиданным результатам. Оказалось, что прессорные реакции можно получать из точек, где регистрировались нейроны как с учащением, так и с урежением активности в ответ на зажатие сонных артерий. Поскольку строгой зависимости активности нейронов этих зон с динамикой артериального давления не найдено, то было предложено называть их с осторож- ностью «нейроны, зависимые от артериального давления». В настоящее время все чаще говорят об отсутствии в продолговатом мозгу специализированных нейронных систем, постоянно связанных с регуляцией кровообращения. Тем не менее, наличие здесь АД-за-висимых нейронов не исключает их участия в регуляции просвета сосудов, хотя еще не выяснены механизмы организации нейронных сетей вазомоторного действия. Работами последних лет выявлены некоторые особенности выходных элементов, т.е. нейронов, аксоны которых проецируются на вазомоторные структуры спинного мозга. Речь идет о так называемых сим-патоактивирующих и симпатоингибирующих путях, воздействующих на симпатические преганглионары. Описаны свойства выходных нейронов, определено место их преимущественного расположения — область гигантоклеточного, мелкоклеточного и центрального вентрального ретикулярных ядер. Влияние симпато-активирующих путей на преганглионарные нейроны осуществляется через элементы промежуточной зоны тораколюмбального отдела спинного мозга и проявляется в вазоконстрикции. Симпатоингибируюгцее действие проявляется двояко — либо путем дисфацилита-ции, т.е. подавления источников активации ваЗомо-торных дреганглионаров, либо путем непосредственного их торможения, что приводит к вазодилатации. Подытоживая все сказанное, следует, очевидно, согласиться со все чаще звучащими предложениями отказаться от понятия «бульбарный вазомоторный центр» в классическом понимании. Скорее всего, роль бульварного отдела в системе вазомоторной регуляции сводится к реализации гипоталамических влияний (где находятся высшие центры регуляции артериального давления) и сопряжению сосудодвигатель-ных и дыхательных системных реакций.
5.2. Мост и средний мозг 5.2.1. Морфофункционалъиая организация и рефлекторная деятельность варолиева моста Варолиев мост входит в систему заднего мозга, который вместе со средним мозгом образует ствол мозга. Ствол мозга включает большое число ядер и путей — восходящих и нисходящих. Важную функциональную роль играет локализованная в этих структурах ретикулярная формация. Все восходящие, равно как и нисходящие, пути центральной нервной системы, связывающие отделы спинного и головного мозга, проходят через варолиев мост, в котором сосредоточен ряд ядер черепно-мозговых нервов, а также ретикулярных ядер, играющих роль в регуляциях вегетативных функций. Так, в каудальной части моста снаружи от лате
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|