Математическое ожидание случайной величины
37.1. Функция распределения вероятностей или плотность вероятности являются полными вероятностными характеристиками случайной величины. Однако, во многих задачах такая полная характеристика случайной величины, с одной стороны, может быть неизвестна для исследователя, а с другой стороны и не обязательна, достаточно ограничиться значением некоторых параметров распределения вероятностей, т.е. некоторых чисел (или числовых характеристик). Здесь уместна аналогия с геометрическим описанием сложной формы твердого тела, когда ограничиваются такими характеристиками (числами) как длина, ширина, высота, объем, момент инерции, и т.д., а детальное описание сложной формы этого тела не рассматривается. Числовыми характеристиками случайных величин чаще всего служат так называемые моменты распределения, простейшим из которых является математическое ожидание случайной величины. Прежде чем вводить определение математического ожидания случайной величины, рассмотрим выражение среднего арифметического результатов измерения дискретной случайной величины. Пусть случайная величина где
Математическим ожиданием (средним, статистическим средним) дискретной случайной величины Если множество значений дискретной случайной величины счетно: Пусть - выражение, определяющее математическое ожидание функции Математическим ожиданием непрерывной случайной величины Аналогично определяется математическое ожидание случайной величины где
37.2. Определения (37.2) и (37.4) согласуются друг с другом. Соотношение (37.4) можно представить приближенно в виде интегральной суммы: где Если Подставим (37.7) в (37.4), тогда что совпадает с (37.2). Таким образом, определение (37.4) математического ожидания можно использовать как универсальное определение как для непрерывных, так и для дискретных случайных величин. Однако вычислять математическое ожидание дискретной случайной величины, конечно, удобнее по формуле (37.2).
Выражение (37.4) можно представить через функцию распределения Пусть функция Это выражение позволяет вычислять математическое ожидание
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|