Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Классификация воздействующих факторов.




 

Каждый вид воздействия характеризуется своим набором факторов. Для климатических воздействий это температура, влажность, давление, скорость ветра и т.д. Все воздействующие факторы по их происхождению разделяют на две группы: объективные и субъективные (рис. 4).

Объективные факторы характеризуют воздействие внешних условий, в которых осуществляют хранение, транспортировку и эксплуатацию ЭУ. Различают прямые и косвенные объективные факторы. Прямые характеризуют естественные воздействия, косвенные – воздействия на ЭУ объекта. Они могут находиться в сложном взаимодействии. Например, поверхность ЭУ, соприкасающаяся при быстром движении с нейтральными частицами, образующимися во время пылевых бурь, метелей, плавания в штормовую погоду, полётов в дождь и снег, электризуется (прямые объективные факторы). Нейтральные частицы приобретают положительный заряд, а ЭУ – отрицательный (возникающий заряд пропорционален кубу скорости относительного движения частиц и ЭУ). При напряжённости поля накопленного заряда 450…600 В/см возникает "коронный" разряд, который приводит к искажению электрического сигнала ЭУ (косвенные факторы).

Рис. 4. Классификация воздействующих факторов

 

Тепловые воздействия проявляются не только как постоянно действующие температуры, но и как перепады температур. Резкому перепаду температур подвергаются ЭУ, расположенные на объектах, быстро перемещающихся по вертикали (летательные аппараты, батискафы, глубинные буры и др.) Например, за короткий промежуток времени температура ЭУ, установленных на самолёте может снижаться от +50 до -40 0С (набор высоты), а затем повышаться от -40 до +100°С (пикирование). Одновременно меняются влажность и давление. При дозвуковых скоростях скорость изменения температуры ЭУ составляет 5…7° С/мин, при сверхзвуковых – до 30° С/мин. Быстрое изменение температуры возможно при включении и выключении электрических нагрузок ЭУ, при движении объекта через тепловые зоны или зоны инфракрасного излучения и т.д.

Действие проникающей (ионизирующей) радиации возможно при использовании ЭУ на космических объектах, высотных летательных аппаратах, атомных электростанциях, в зонах, заражённых радиоактивными веществами.

Субъективные факторы характеризуют человеческую деятельность на этапах проектирования, производства и эксплуатации. Результат их воздействия – ошибки проектирования, производства и эксплуатации, приводящие к дефектам изделий, которые при воздействии объективных факторов приводят к потере работоспособности ЭУ. K ошибкам проектирования относятся не только недостатки электрических и конструктивно-технологических решений, но и переоценка возможностей операторов, обслуживающих спроектированные ЭУ, недостаточно эффективная система контроля работоспособности изделий. Ошибки производства обусловлены нарушениями ТП, применением некачественных комплектующих и материалов, отсутствием жёсткого контроля на различных стадиях производства ЭУ. Ошибки эксплуатации связаны с нарушениями обслуживающим персоналом эксплуатационных требований, предусмотренных соответствующими документами.

Влияние объективных и субъективных факторов на работоспособность ЭУ различно. Результат воздействия объективных факторов зависит от их числовых значений. Из-за наличия субъективных факторов снижается устойчивость изделий к воздействию объективных факторов, в результате уменьшаются их предельно допустимые значения, следовательно, снижаются качество и надёжность ЭУ. Негативные последствия влияния субъективных факторов часто скрыты от разработчиков.

Климатические воздействия

Климатические воздействия при эксплуатации ЭУ подразделяют на естественные и искусственные. Естественные климатические воздействия определяются погодными условиями, включающими температуру, влажность, ветер, атмосферное давление и др. Искусственные климатические воздействия создаются при функционировании ЭУ и расположенных рядом объектов.

Формирование естественных климатических воздействий. При составлении технических условий на ЭУ и программы испытаний, естественные климатические воздействия учитывают в виде усреднённых факторов в определённых частях земной поверхности за продолжительный период времени. Совокупность усреднённых климатических воздействий называют климатом. В основе классификации климатов лежат усреднённые за много лет значения основных климатических факторов:

- экстремальной (максимальной и минимальной) температуры за год;

- максимальной абсолютной влажности воздуха;

- максимальной температуры в сочетании с относительной влажностью воздуха, равной или превышающей 95 %.

Микроклиматические условия в электронных устройствах из-за саморазогрева характеризуются более высокими значениями максимальной температуры.

Климатические факторы, влияющие на ЭУ. На работу ЭУ значительное влияние оказывает температурный режим эксплуатации; важнейшие показатели – абсолютные годовые минимумы и максимумы температуры. Основными факторами, определяющими изменение температуры, являются широта местности, степень континентальности и топографические условия. Влияние первых двух факторов обусловливает плавное изменение температуры. Топографические условия (высота над уровнем моря и форма рельефа) нарушают этот плавный ход. Под влиянием климатических факторов в ЭУ протекают сложные физико-химические процессы, изменяющие их свойства. Поэтому при конструировании необходимо располагать не только допустимыми значениями воздействующих климатических факторов, но и информацией об изменении свойств элементов при воздействии этих факторов. Из-за наличия в конструкции ЭУ частей из материалов с различными температурными коэффициентами линейного расширения опасность представляют не сами экстремальные значения температуры, а её резкие колебания. При разности температур DТ в сопряжённых частях конструкции возникают механические напряжения g =E(a1-a2)DТ, где Е – модуль упругости; a1 и a2 – температурные коэффициенты линейного расширения материалов сопряжённых частей конструкции. При значениях g, превышающих допустимые, возможно разрушение конструкции ЭУ.

При воздействии низких температур ухудшаются механические свойства изоляционных материалов (повышается хрупкость, уменьшается эластичность, увеличивается вязкость смазочных материалов), что может вызвать снижение механической прочности и износоустойчивости. Циклические воздействия температур приводят к появлению трещин, пор и зазоров в деталях и узлах ЭУ и способствуют их росту при замерзании конденсированной влаги.

Изменение упругих свойств контактных элементов и рост пленокплёнок на их рабочих частях может привести к увеличению переходного сопротивления, возрастанию его динамической нестабильности и т.д. Изменение размеров отдельных элементов конструкции из-за теплового расширения материалов может привести к деформации, заклиниванию и даже механическим поломкам. Таким образом, для уменьшения вероятности появления отказов необходимо ограничивать длительность работы при предельных рабочих температурах.

Особенно опасна повышенная влажность окружающей среды. Это объясняется агрессивным воздействием паров воды на большинство используемых материалов, приводящим к изменению их электрофизических свойств. При влажной атмосфере на поверхности материалов образуется очень тонкая плёнка воды, причём её толщина резко возрастает с приближением относительной влажности к 90%. Адсорбция паров воды значительно больше у материалов с ионным строением. Силы притяжения полярных молекул воды к ионам значительно больше, чем к нейтральным молекулам. В зависимости от величины этих сил на поверхности материалов могут образовываться или отдельные шарообразные скопления воды, или сплошная тонкая плёнка влаги. Воздействие самой влаги вызывает незначительное ухудшение коррозионной стойкости большинства металлов. Но процесс коррозии ускоряется при загрязнениях в атмосфере, концентрация которых увеличивается при приближении к промышленным центрам и морю[1]. Образование плёнок влаги на диэлектрических материалах даже при незначительном загрязнении поверхностей приводит к быстрой ионизации плёнок (e >1) и увеличению их проводимости. Скорость уменьшения сопротивления изоляции непостоянна. В начальный период воздействия влаги сопротивление изоляции уменьшается быстро, затем снижение замедляется. Плёнка способствует возникновению ёмкостного эффекта, из-за высокого значения диэлектрической постоянной воды. Поглощение влаги изоляционными материалами приводит не только к изменению их электрических свойств, но и ухудшению ряда механических параметров.

 

Группы климатов климатических воздействий и категории применения элементов ЭУ
  Группа климата Минимальная температура, 0С Максимальная температура, 0С Максимальная температура при относительной влажности более 95%, 0С Максимальная интенсивность дождя, мм×мин-1   Категория применения
Тёплый умеренный -20 +35 +25   Ограниченное
Холодный умеренный, тёплый умеренный, тёплый сухой   -33   +40   +27    
Общее
Все климаты Земли, за исключением экстремально холодного и экстремально тёплого   -50   +40   +33    
Универсальное
Все климаты Земли     -65   +55   +33   В любой точке земного шара

* Для всех групп климатов максимальное изменение температуры воздуха за 8 часов – 40 0С; максимальная плотность потока солнечной радиации 1125 Вт× м-2.

В недостаточно герметизированных объёмах циклическое изменение температуры приводит к накоплению влаги внутри блоков, а при понижении температуры (например, в ночной период, при подъёме летательных аппаратов и т.п.) на элементах аппаратуры происходит конденсация влаги.

Для защиты от воздействия повышенной влажности элементы ЭУ герметизируют, используя органические полимерные материалы. Производят покрытие лаками, эмалями, обволакивание компаундами, литьевое прессование в пластмассу, герметизацию в готовые пластмассовые корпуса и т.д. Но ни один из способов герметизации не обеспечивает идеальной влагозащиты из-за микрополостей в сварных и паяных швах корпусов, а при герметизации полимерными материалами – из-за способности последних сорбировать и пропускать пары воды.

Одним из способов защиты от воздействия повышенной влажности является размещение внутри корпуса ЭУ патрона с силикагелем, соприкасающимся с наиболее тепловыделяющим элементом. При этом пористый силикагель с высокой сорбирующей способностью во время остывания и понижения температуры внутри корпуса поглощает влагу, а при разогреве тепловыделяющего элемента силикагель выделяет влагу, которая удаляется из корпуса через вентиляционные отверстия.

Пониженное атмосферное давление снижает электрическую прочность воздушного промежутка, создавая благоприятные условия для электрического пробоя воздуха или перекрытия по поверхности электронных элементов. Возникающая при этом ионизация воздуха способствует ускоренному старению изоляционных и проводниковых материалов.

Пыль и песок способствуют коррозии металлических деталей и развитию плесени, а попадая в зазоры между трущимися частями, ускоряют их износ.

Биологические воздействия

Биологические воздействия определяются совокупностью воздействующих биологических факторов. Биологический фактор (биофактор) – это организмы или их сообщества, вызывающие нарушение работоспособного состояния объекта. Событие выхода какого-либо параметра ЭУ под действием биофактора за границы, указанные в ТД, называют биологическим повреждением (биоповреждением).

Виды биоповреждений разделяют на четыре типа:

1) механическое разрушение при контакте организмов с ЭУ;

2) ухудшение эксплуатационных параметров;

3) биохимическое разрушение;

4) биокоррозия.

Рис. Классификация биоповреждений

 

Механическое разрушение ЭУ вызывается макроорганизмами, имеющими размеры, сравнимые с габаритами изделий. Макроразрушение при контакте может произойти в результате столкновения, прогрызания и уничтожения изделия, например при столкновении птиц с самолетами и антенн радиолокационных станций, прогрызании материалов (крысами, зайцами, белками), а также открыточелюстными насекомыми (различными видами термитов и муравьев). Уничтожение материалов и изделий обычно происходит в процессе питания организмов.

Ухудшение эксплуатационных параметров вызывается биозагрязнением, биозасорением и биообрастанием. Биозагрязнением называют выделения организмов и продукты их жизнедеятельности, воздействие которых при смачивании водой или впитывания влаги воздуха приводит к изменению параметров ЭУ. Биозасорение связано с наличием спор грибов и бактерий, семян растений, частей мицелия грибов, помета, выделений организмов, отмирающих организмов. Биообрастание бактериями, грибами, водорослями, губками, моллюсками и другими организмами поверхностей ЭУ усиливает коррозию металлов. Биохимическое разрушение широко распространённый, но наиболее трудно поддающийся изучению вид биоповреждений, т.к. вызывается в основном микроорганизмами. Этот вид разрушения разделяют на два подвида: биологическое потребление материалов в процессе питания микроорганизмов и химическое воздействие выделяющихся при этом веществ.

Биологическое потребление связано с предварительным химическим разрушением ферментами исходного материала, иногда только одного компонента (обычно высокомолекулярного соединения, например пластификатора, стабилизатора). Такое разрушение открывает путь физико-химической коррозии, приводит к ухудшению свойств материала и его механическому разрушению под действием эксплуатационных нагрузок. Химическое действие продуктов обмена повышает агрессивность среды, стимулирует процессы коррозии. Физико-химическая коррозия на границе материал – организм обусловлена воздействием амино- и органических кислот, а также продуктов гидролиза. В основе биоповреждения, называемого биокоррозией, лежат электрохимические процессы коррозии металлов под действием микроорганизмов. Характер процессов и механизмов биоповреждений и их влияние на материалы и изделия тесно связаны с ростом и размножением организмов, которым необходимо постоянно пополнять энергию от внешних источников.

Подавляющее большинство (50…80%) повреждений ЭУ обусловлено воздействием микроорганизмов (бактерий, плесневых грибов и др.), развитие и жизнедеятельность которых определяются внешними факторами:

- физическими (влажность и температура среды, давление, радиация и т.д.),

- химическими (состав и реакция среды, её окислительно - восстановительные действия),

- биологическими.

Наибольшее влияние на активность микроорганизмов оказывают температура и влажность.

Бактерии – самая многочисленная и распространённая группа одноклеточных микроорганизмов. Бактерии быстро размножаются и легко приспосабливаются к изменяющимся условиям среды т.к. они могут адаптивно образовывать ферменты, необходимые для трансформации питательных сред. Например, "безвредные" в земных условиях бактерии трансформируются во вредные штаммы в условиях невесомости, постоянной температуры, влажности и др. на космических пилотируемых аппаратах. Одна из особенностей микроорганизмов – способность к спорообразованию. Образование спор у бактерий не связано с процессом размножения, а служит приспособлением к выживанию в неблагоприятных условиях внешней среды (недостатке питательных веществ, высушивании, изменении рН среды и т.д.), причемпричём из одной клетки формируется только одна спора. Размножение бактерий осуществляется путемпутём деления клеток.

Плесневые грибы отличаются от бактерий более сложным строением. Клетки грибов имеют сильно вытянутую форму и напоминают нити – гифы. Гифы ветвятся, образуя мицелий или грибницу. Многообразие питательных материалов, используемых грибками, обусловлено большим числом ферментов, катализирующих процессы разложения. Грибковые образования в процессе жизнедеятельности выделяют продукты обмена веществ, которые преимущественно состоят из органических кислот (щавелевой, муравьиной, угольной, лимонной), вызывающих коррозию металла или разложение электроизоляционного материала. Наиболее разрушительное воздействие плесневые грибы оказывают на изоляционные материалы, а также на канифоль и спиртоканифольные флюсы. Особенность грибов – разнообразие способов их размножения: обрывками мицелия, спорами, оидиями, конидиями. Оптимальные условия для развития плесневых грибов – высокая влажность (более 85%), температура +20..30°С°С и неподвижность воздуха. Большую роль при заселении материалов грибами играет способность спор адсорбироваться на гладкой поверхности.

действие микроорганизмов на материалы и элементы ЭУ. Благодаря микроскопическим размерам гифы и споры проникают в углубления и трещины материала, прорастают, образуют мицелий, который, быстро распространяясь, вызывает изменение массы, водопоглощения и степени гидрофобности. Обрастание микроорганизмами зависит от химического состава и строения материала, микрофлоры окружающей среды, загрязнений (органических и неорганических) в воздухе, климатических условий. В первую очередь грибы поражают материалы, содержащие питательные для них вещества. Это ткани из натуральных волокон, белковые клеи, углеводороды, пластмассы, краски, остатки растворителей и др. Используя эти материалы в качестве углерода и энергии, грибы приводят их в негодность. Однако порче подвергаются и материалы, не содержащие никаких питательных веществ (разрастание мицелия на поверхности оптического стекла – после удаления грибного налёта на стекле остаются следы, напоминающие мицелий, – "рисунок травления"). Это следствие разрушения стекла продуктами метаболизма; наиболее агрессивными являются органические кислоты (лимонная, уксусная, щавелевая, винная, яблочная и др.). Органические кислоты и другие метаболиты, обладая высокой проводимостью, могут быть основной причиной снижения удельных поверхностного и объёмного сопротивлений материалов, напряжения пробоя, увеличения тангенса угла диэлектрических потерь, разрушения лакокрасочных покрытий. Эти кислоты также стимулируют коррозию металлов.

Под влиянием плесени возрастает интенсивность старения пластмасс, прочность стеклопластиков снижается на 20…30%. Развитие плесневых грибов на электроизоляционных материалах ухудшает их диэлектрические свойства. Высокое содержание влаги в клетках грибов (до 90%) приводит к коротким замыканиям между токоведущими частями. Источниками спор плесневых грибов являются руки рабочих, технологические среды и воздух. Применение горячих операций на начальных стадиях технологического процесса значительно уменьшает число биоповреждений. Благоприятное действие оказывает аэрация воздуха в производственных помещениях.

Насекомые повреждают материалы и изделия, расположенные на пути к пище, месту окукливания и строительства гнезд. Щели, углубления и другие укрытия привлекают насекомых. Шероховатая поверхность удобна для их передвижения. На холодные предметы насекомые не садятся, теплые их привлекают. Насекомые сначала выгрызают в материале небольшие полости, затем их обживают, вызывая биозасорение и биозагрязнение изделий. Разрушениям подвергаются, прежде всего, целлюлозосодержащие (дерево, картон, бумага) и мягкие синтетические материалы, изделия из пенополиуретана, фенопластов с целлюлозными наполнителями, поливинилхлоридных трубок. Большие скопления насекомых часто служат причиной коротких замыканий. Из других видов насекомых наиболее опасны моль (повреждает натуральные и искусственные ткани), жуки-кожееды (разрушают кабели и покрытия), муравьи (засоряют и загрязняют изделия).

Грызуны наносят механические повреждения, вызывающие обрывы, замыкания и нарушения герметизации. В республиках бывшего СССР насчитывалось около 140 видов грызунов – наибольший вред причиняют серая, черная, пластинчатозубая и туркестанская крысы, домовая, полевая, лесная и азиатская мыши, белки, бобры, ондатры, кроты, слепыши, зайцы. Грызуны повреждают приборы, тару и упаковку, теплоизоляционные материалы, резино- технические изделия, пленкиплёнки, кабель и т.д. Помимо прямого уничтожения сырья, материалов, изделий грызуны загрязняют их экскрементами, шерстью, материалом гнездгнёзд, остатками пищи.

Космические воздействия

Космические воздействия образованы совокупностью следующих факторов:

- электромагнитных и корпускулярных излучений,

- глубокого вакуума,

- лучистых тепловых потоков,

- невесомости,

- метеорных частиц,

- магнитных и гравитационных полей планет и звездзвёзд и др.

Выделяют три среды: межзвёздную, межпланетную, атмосферу планет и их спутников. Межзвёздная среда состоит из межзвёздного газа и мельчайших твёрдых частиц, пыли, заполняющих пространство между звёздами. Межзвёздная среда вблизи Солнца переходит в межпланетную среду, которая заполняет пространство между планетами Солнечной системы. Межпланетная среда состоит из расширяющегося вещества солнечной короны – ионизированных атомов водорода (90%), атомов гелия (9%). Наибольший интерес при эксплуатации ЭУ представляет атмосфера Земли, в основном ее внешняя часть – экзосфера.

Изменение параметров атмосферы Земли с высотой

Высота, км Давление, Па Концентрация частиц, см -3 Температура, К Характеристика вакуума
Уровень моря,   1,33×105   2,7×1019     ---
  0,5×10-5 7×109 1 200  
  1,0×10-5 8×108 1 500 Глубокий
  4,0×10-7 2,5×107 1 600  
  4×10-9 1,5×105 1 600  
  8×10-10 2×104 1 800 Очень глубокий
  5×10-10 1×104 2 000
  4×10-10 4×103 3 000  
  2,5×10-10 1×103 15 000  
  2,5×10-11   100 000 Сверхглубокий
  1,5×10-11 3-4 200 000  

 

Здесь температура характеризует лишь кинетическую энергию частиц газа, которая не оказывает прямого влияния на температуру открытых поверхностей ЭУ, установленных на космических объектах, в силу большой разреженности среды.

Эксплуатация в космосе характеризуются воздействием на ЭУ корпускулярных излучений. Поток элементарных частиц высокой энергии, преимущественно протонов, ядер гелия (a- частиц) и ядер более тяжёлых элементов приходит на Землю изотропно из удалённых областей Галактики. Это первичные космические лучи. Взаимодействуя с атомными ядрами воздуха, они рождают в атмосфере вторичное излучение, которое составляют все известные элементарные частицы. Для ЭУ на космических аппаратах существенное влияние имеют радиационные пояса, которые представляют собой стабильные области заряженных частиц, задержанных и удерживаемых магнитным полем Земли, и метеорные частицы, имеющие скорости до 72 км/с.

Под влиянием солнечной радиации изменяются физико-химические свойства многих материалов. Полиэтилен при хранении в темноте не изменяет своих свойств в течении многих лет, однако его срок службы под действием солнечной радиации – 6 мес. Ультрафиолетовое облучение активирует и поверхность металлов, влияя на скорость их коррозии.

Радиационная стойкость электронных элементов в основном определяется изоляционными материалами. Радиационные излучения приводят к изменению внутреннего строения молекул изоляционных материалов. Склонность к образованию пространственной структуры под воздействием радиации выражена тем ярче, чем выше молекулярный вес полимера. Облучённый полимер обладает большей прочностью, большим модулем упругости и меньшей газопроницаемостью, чем необлучённый. Однако образование поперечных связей, число которых растёт с дозой облучения, вызывает появление в материале внутренних напряжений и повышает его хрупкость. Воздействие большой дозы радиации на фторопласт вызывает деструкцию его макромолекул, что приводит к резкому ухудшению его физико-химических свойств, вплоть до образования порошка с выделением фтора. Таким образом, применение соединителей в условиях радиационного излучения должно производиться с учётом радиационной стойкости изоляционных материалов.

 

Механические воздействия

При эксплуатации и транспортировке ЭУ подвергаются механическим воздействиям: вибрационным, ударным и линейным нагрузкам, а также звуковому давлению (акустическим шумам). Требования по механическим нагрузкам на ЭУ постоянно ужесточаются.

Вибрация – один из самых опасных и распространённых видов механических воздействий. Вибрация – колебания самого изделия или частей его конструкции. Вибрации приводят к поломкам конструкции, обрывам проводов и кабелей, нарушению герметичности, механическим напряжениям и деформациям в ЭУ. Наиболее часто вибрационные нагрузки возникают в бортовой электронной аппаратуре. Вибрации зависят от места расположения ЭУ, способа монтажа и крепления. Установившиеся вынужденные колебания определяются гармонической функцией. Амплитуда колебаний зависит не только от параметров системы и возбуждающей силы, но и от частоты w. Чем выше добротность механической колебательной системы, тем меньше затухание колебаний и тем острее пик резонансной кривой. Если частота w возбуждающей силы совпадает с собственной частотой w0 механической системы, то возбуждается резонансное колебание. Нагрузки на ЭУ возрастают в Q раз.

Рис. Уровни вибрационных воздействий, которым подвергаются ЭУ 1 – вибрация, 2 – вибрация, возбуждаемая ударом  

Такая модель приемлема для исследования только простых механических систем ЭУ, т.к. большая их часть представляет собой сложные механические системы. Резонанс отдельного элемента конструкции независимо от резонанса всей его конструкции может привести к нарушению работоспособности всего изделия. Для расчёта резонансных частот сложных систем целесообразно изображать системы в виде совокупности изолированных элементов, а связи между ними заменять условиями их закрепления. Метод анализа сложных механических систем путём расчёта отдельных элементов получил в промышленности название поузлового метода [2].

Добротность Q связана с полосой частот резонансной системы (механической, так же как и электромагнитной) как: Время достижения установившейся амплитуды резонансных колебаний узлов ЭУ измеряется долями секунды. Ширина 2Df резонансной полосы частот определяется разностью частот f" и f ¢ при которых амплитуда колебаний уменьшается до от своего значения при резонансе (рис.). Резонансная характеристика механической колебательной системы с одной степенью свободы

Удар – механическое воздействие, вызванное ускорением при резком изменении скорости или направления движения ЭУ. При ударе возникают силы, деформирующие конструктивные элементы изделий и приводящие к образованию механических напряжений. Они могут служить причиной разрушения изделий. Удар сопровождается возбуждением затухающих колебаний, т.е. неустановившейся вибрацией на частотах собственных колебаний конструктивных элементов изделий. Уровни разрушающих усилий возрастают в Q- раз, если элементы конструкции резонируют на частотах возмущений, вызванных ударом. Тряска – воздействие на ЭУ серии ударов в виде импульсов, следующих один за другим.

Акустический шум. Некоторые виды вибрации сопровождаются выделением энергии звуковой частоты. Это явление называется акустическим шумом или акустической вибрацией. Выделение энергии колебаний звуковой частоты сопровождается механическими колебаниями частиц атмосферы, которые приводят к изменению давления по сравнению со статическим. Разность между статическим давлением и давлением в данной точке звукового поля называется звуковым давлением. распространение звуковой волны характеризуется колебательным смещением частиц среды от положения покоя. Скорость распространения звуковых волн в воздухе зависит от температуры среды по закону . При нормальном атмосферном давлении и температуре 00 С скорость звука равна 331 м/с. С повышением температуры до 290 К (270 С) она увеличивается до 340 м/с. Скорость звука зависит от температуры воздуха, его влажности, направления и силы ветра. Акустический шум приводит к механическому возбуждению конструктивных элементов изделия. Под действием энергии колебаний звуковой частоты в электронных элементах возникает микрофонный эффект; начинают вибрировать реле, малогабаритные элементы, объёмные проводники.


 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...