Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Второе начало термодинамики.

Второе начало термодинамики устанавливает наличие в природе фундаментальной асимметрии, т.е. однонаправленности всех происходящих в ней самопроизвольных процессов.

Второй основной постулат термодинамики связан так же с другими свойствами термодинамического равновесия как особого вида теплового движения. Опыт показывает, что если две равновесные системы А и В привести в тепловой контакт, то независимо от различия или равенства у них внешних параметров они или остаются по прежнему в состоянии термодинамического равновесия, или равновесие у них нарушается и спустя некоторое время в процессе теплообмена (обмена энергией) обе системы приходят в другое равновесное состояние. Кроме того, если имеются три равновесные системы А,В и С и если системы А и В поразнь находятся в равновесии с системой С, то системы А и В находятся в термодинамическом равновесии и между собой (свойства транзитивности термодинамического равновесия).

Пусть имеются две системы. Для того, чтобы убедится в том, что они находятся в состоянии термодинамического равновесия надо измерить независимо все внутренние параметры этих систем и убедиться в том, что они постоянны во времени. Эта задача черезвычайно трудная.

Оказывается однако, что имеется такая физическая величина, которая позволяет сравнить термодинамические состояния двух систем и двух частей одной системы без подробного исследования и внутренних параметров. Эта величина, выражающая состояние внутреннего движения равновесной системы, имеющая одно и то же значение у всех частей сложной равновесной системы независимо от числа частиц в них и определяемое внешними параметрами и энергией называется  температурой.

Температура является интенсивным параметром и служит мерой интенсивности теплового движения молекул.

Изложенное положение о существовании температуры как особой функции состояния равновесной системы представляет второй постулат термодинамики.

Иначе говоря, состояние термодинамического равновесия определяется совокупностью внешних параметров и температуры.

Р.Фаулер и Э.Гуггенгейм назвали его нулевым началом, так как оно подобно первому и второму началу определяющим существование некоторых функций состояния, устанавливает существование температуры у равновесных систем. Об этом упоминалось выше.

Итак, все внутренние параметры равновесной системы являются функциями внешних параметров и температур. (Второй постулат термодинамики).

Выражая температуру через внешние параметры и энергию, второй постулат можно сформулировать в таком виде: при термодинамическом равновесии все внутренние параметры являются функциями внешних параметров и энергии.

Второй постулат позволяет определить изменение температуры тела по изменению какого либо его параметра, на чем основано устройство различных термометров.

 

ОБРАТИМЫЕ И НЕОБРАТИМЫЕ ПРОЦЕССЫ.

 

Процесс перехода системы из состояния 1 в 2 называется  обратимым, если возвращением этой системы в исходное состояние из 2 в 1 можно осуществить без каких бы то ни было изменений окружающих внешних телах.

Процесс же перехода системы из состояния 1 в 2 называется необратимым, если обратный переход системы из 2 в 1 нельзя осуществить без изменения в окружающих телах.

Мерой необратимости процесса в замкнутой системе является изменением новой функции состояния - энтропии, существование которой у равновесной системы устанавливает первое положение второго начала о невозможности вечного двигателя второго рода. Однозначность этой функции состояния приводит к тому, что всякий необратимый процесс является неравновесным.

Из второго начала следует, что S является однозначной функцией состояния. Это означает, что dQ/T  для любого кругового равновесного процесса равен нулю. Если бы это не выполнялось, т.е. если бы энтропия была неоднозначной функцией состояния то, можно было бы осуществить вечный двигатель второго рода.

Положение о существовании у всякой термодинамической системы новой однозначной функцией состояния энтропии S, которая при адиабатных равновесных процессах не изменяется и состовляет содержание второго начала термодинамики для равновесных процессов.

Математически второе начало термодинамики для равновесных процессов записывается уравнением:

 

             dQ/T = dS или dQ = TdS     (1.3)

 

Интегральным уравнением второго начала для равновесных круговых процессов является равенство Клаузиуса:

 

                                         dQ/T = 0      (1.4)

 

Для неравновесного кругового процесса неравенство Клаузиуса имеет следующий вид:

 

                                         dQ/T < 0       (1.5)

 

Теперь можно записать основное уравнение термодинамики для простейшей системы находящейся под всесторонним давлением:

                            TdS = dU + pdV        (1.6)

 

Обсудим вопрос о физическом смысле энтропии.

 

ЭНТРОПИЯ.

 

Второй закон термодинамики постулирует существование функции состояния, называемой «энтропией» (что означает от греческого «эволюция») и обладающей следующими свойствами:

а) Энтропия системы является экстенсивным свойством. Если система состоит из нескольких частей, то полная энтропия системы равна сумме энтропии каждой части.

в) Изменение энтропии d S состоит из двух частей. Обозначим через dе S поток энтропии, обусловленный взаимодействием с окружающей средой, а через di S - часть энтропии, обусловленную изменениями внутри системы, имеем

 

                             d S = de S + di S           (1.7)

 

Приращение энтропии di S  обусловленное изменением внутри системы, никогда не имеет отрицательное значение. Величина di S = 0, только тогда, когда система претерпевает обратимые изменения, но она всегда положительна, если в системе идут такие же необратимые процессы.

Таким образом

                                   di S = 0                   (1.8)

(обратимые процессы);

                                   di S > 0                   (1.9)

(необратимые процессы);

Для изолированной системы поток энтропии равен нулю и выражения (1.8) и (1.9) сводятся к следующему виду:

 

                             d S = di S > 0              (1.10)

(изолированная система).

Для изолированной системы это соотношение равноценно классической формулировке, что энтропия никогда не может уменьшаться, так что в этом случае свойства энтропийной функции дают критерий, позволяющий обнаружить наличие необратимых процессов. Подобные критерии существуют и для некоторых других частных случаев.

Предположим, что система, которую мы будем обозначать символом 1, находится внутри системы 2 большего размера и что общая система, состоящая системы 1 и 2, является изолированной.

Классическая формулировка второго закона термодинамики тогда имеет вид:

                         d S = d S 1 + d S 2 ³ 0     (1.11)

Прилагая уравнения (1.8) и (1.9) в отдельности каждой части этого выражения, постулирует, что       di S 1 ³ 0, di S 2 ³ 0  

Ситуация при которой  di S 1 > 0 и di S 2 < 0, а d(S 1 + S 2)>0, физически неосуществима. Поэтому можно утверждать, что уменьшение энтропии в отдельной части системы, компенсируемое достаточным возрастанием энтропии в другой части системы, является запрещенным процессом. Из такой формулировки вытекает, что в любом макроскопическом участке системы приращение энтропии, обусловленное течением необратимых процессов, является положительным. Под понятием «макроскопический участок» системы подразумевается любой участок системы, в котором содержится достаточное большое число молекул, чтобы можно было принебреч микроскопическими флуктуакциями. Взаимодействие необратимых процессов возможно лишь тогда, когда эти процессы происходят в тех же самых участках системы.

Такую формулировку второго закона можно было бы назвать «локальной» формулировка в противоположность «глобальной» формулировка классической термодинамики. Значение подобной новой формулировке состоит в том,что на ее основе возможен гораздо более глубокий анализ необратимых процессов.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...