Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Определение понятия «норма» 4 глава




Общая передняя высота лица (N—Gn), общая высота средней части лица (Hfm) от точ­ки на середине плоскости Nse до точки на середине линии Gn—Go, общая задняя высота лица (Hfp) от точки Se до точки Go, глубина средней части лица (Dmf) от точки на середи­не линии N—Gn до точки на середине линии Se— Go.

Определив точки и плоскости, приступают к анализу боковой ТРГ, выделяя кранио-, гнато- и профилометрию. В каждом разделе проводят линейные измерения и соотноше­ния их величин, угловые измерения.

Краниометрия. Целью краниометрических исследований является определение распо­ложения челюстей и височно-нижнечелюстного сустава по отношению к основанию чере­па. В качестве ориентира для краниометрии используют плоскость передней части основа­ния черепа (N—Se). Варианты расположения челюстей определяют по величинам углов: лицевого, инклинационного и угла «горизонтали» (рис. 89).

1. Лицевой угол (1) образуется при пересечении линий NSe и NSs (внутренний нижний угол), его называют углом «F» (Facies — лицо). При ортогнатическом прикусе в среднем он равен 85±5°.

2. Инклинационный угол «I» (2) (инклинация — наклон, т.е. угол наклона зубочелюст-ного комплекса относительно основания черепа) образуется при пересечении плоскости Рп и SpP (внутренний верхний угол), и его средняя величина равна 85°.

3. Для определения положения суставной головки по отношению к основанию черепа определяют угол (3), образующийся при пересечении плоскости Рп и Ро— Or (франкфурт­ская горизонталь). По A.Schwarz — это угол горизонтали «Н», который также влияет на форму профиля лица.

Гнатометрические исследования позволяют установить с помощью определённых изме­рений важные морфологические особенности различных видов аномалий прикуса. При этом измерения касаются зубочелюстного комплекса, расположенного между двумя базальными плоскостями — SpP (плоскостью основания верхней челюсти) и MP (плоско­стью основания нижней челюсти) На практике наиболее важными являются следующие измерения (рис. 89).

1. Существует определённая зависимость в соотношении длины челюстей. Длина ниж­
ней челюсти так относится к длине передней части основания черепа (NSe), как 20:21 или
60:63. Длина верхней челюсти так относится к длине нижней, как 2:3, т.е. длина верхней
челюсти равняется 2/3 длины нижней. По данным Korkhaus, искомая длина ветви нижней
челюсти так относится к длине её тела, как 5:7, т.е. длина ветви составляет 5/7 длины тела
челюсти. Разница в искомой и действительной длине челюстей указывает на степень их
недоразвития или перерастания.

Степень развития челюстей по вертикали (зубоальвеолярная высота) определяется: в области передних зубов по перпендикуляру от режущего края центральных резцов и в об­ласти боковых — по перпендикуляру от середины жевательной поверхности шестых и седьмых зубов к плоскости основания соответствующей челюсти (SpP или Мр).

2. Угол, образованный двумя базальными плоскостями — SpP и MP. Его называют ба-зальным углом, или углом «В», и он равен в среднем 20+5°. Уменьшенный угол является признаком хорошо развитых жевательных мышц, а его увеличение указывает на недораз­витость коренных зубов. Большой базальный угол всегда сопутствует тяжёлой форме от­крытого прикуса. При этом наблюдается и увеличение угла нижней челюсти.

3. Гониальный угол, или угол нижней челюсти, образуется при пересечении касатель­ных к нижнему краю нижней челюсти и задней поверхности её ветви. Среднее его значе­ние колеблется в пределах 123±10°. Его увеличение или уменьшение способствует отяго­щению аномалий.


88 Глава 3- Классификации зубочелюстных аномалий и методы диагностики в ортодонтш


tr

tr — trichion — граница волосистой части головы

п — кожная точка nasion

р — кожная точка porionor = орбитальная точка

Н — горизонталь через точки Р и Ог

sn —кожная подносовая точка

gn — кожная точка симфиза нижней челюсти

Рп и Ро — перпендикуляры к горизонтали Н

KPFKiefer-Profil-Feld (профильное поле)

Рис. 90. Схема расшифровки профилометрических данных.

KPF

4. Осевые наклоны зубов (углы 4, 5, 7, 8) измеряются по отношению к соответствующим им базальным плоскостям. Например, Pi X к SpP равен 70° и т.д. Средние величины углов для верхних центральных резцов, клыков и премоляров составляют 70, 80 и 90°; для нижних рез­цов и клыков — 90° с разницей ±5° (углы наклона центральных верхних и нижних резцов из­меряются снаружи, т.е. нижний внешний угол). Если осевой наклон верхних резцов меньше 65°, то они находятся в положении протрузии; если больше 75° — в положении ретрузии.

5. Продолжение длинных осей верхних и нижних резцов до их пересечения образует меж­резцовый угол (6) «ii». Измерение производится вовнутрь, и среднее значение угла составля­ет 140+5°. На взаиморасположение резцов влияет величина базального угла (SpP—MP).

Профилометрия. Немаловажное значение в профилометрическом исследовании имеет толщина мягких тканей лица, которые могут как компенсировать неправильный профиль, так и усугублять ещё больше. Поэтому необходимо всегда учитывать толщину мягких тка­ней, что особенно важно при выборе метода лечения. Имеются следующие средние дан­ные толщины мягких тканей профиля лица при съёмке на расстоянии 2 м: расстояние между костной и кожной точками N— n = 7 мм; sn—Ss = 14—16 мм; spm—Spm = 12 мм; pg— Pg = 15 мм (см. рис. 88, 89).

Между носовой и орбитальной плоскостями расположено профильное поле KPF (Kiefer-Profil-Feld) (рис. 90). Особое практическое значение имеет профильный угол «Т», который образуется при пересечении Рп и линии, соединяющей pg и sn (pogonion и sub-nasale) (см. рис. 89). Угол «Т» можно определить по фотографии. При ортогнатическом прикусе он проходит по центру красной каймы верхней губы, касаясь края нижней, и ра­вен в среднем 10°, но может иметь и отрицательную величину.

Возраст пациента и появление оссификационных центров запястья кисти рук. Развитие и рост челюстных костей носят прерывистый, скачкообразный характер и совпадают с периодами активного роста всего организма. Большинство клиницистов считают наиболее целесообраз­ным проведение ортодонтического лечения в периоды активного роста лицевого скелета. На­иболее интенсивный рост его приходится на 1 -й, 3-й, 6—7-й, 11— 13-й годы жизни.

Таблица 3

Кости запястья

 

Названия костей Сроки оссификации
Трёхгранная 2-3 года
Полулунная 3—4 года
Ладьевидная и многоугольная 5-6 лет
Гороховидная 10-12 лет
Сесамовидная 12 лет (девочки), 15 лет (мальчики)
Фаланги пальцев кисти 11 лет (девочки), 13 лет (мальчики)

33- Диагностика




Рис. 91. Схематическое изображение рентгенограммы кисти руки для определения «костного» периода рос­та пациента (Bjork) (объяснение в тексте).


Необходимо определение соответствия зубного и так называемого «костного» возраста. Поэтому для выявления таких периодов используют рентгенограммы кистей рук (табл. 3, рис. 91). Окостенение кисти и запястья считается стандартом скелетного развития. Орто­донту очень важно знать, когда заканчивается скелетный рост, ибо вариативность зубного возраста имеет весьма значительный диапазон. Наиболее достоверными были признаны нижеследующие критерии. Синостоз эпифизов с диафизами наступает в 15—19 лет, ногте­вых фаланг — в 13—18 лет, средних — в 14—20 лет.

Оценка стадии роста челюстей по степени формирования шейных позвонков. Степень фор­мирования зубочелюстной системы можно определить по предложенному McNamara пра­вилу роста шейных позвонков «1, 2, 3...». На телерентгенограмме принимаются во внима­ние II—VI шейные позвонки. По мнению автора, существуют 6 стадий формирования шейных позвонков с максимальным уровнем в 3—4 стадии.

В 1-й стадии каждый позвонок имеет трапециевидную форму, закругленность очерта­ний, уплощенную нижнюю границу. Во 2-й появляется вогнутость II позвонка, а осталь­ные приобретают более прямоугольную форму. Это означает, что до начала пика активно­го роста нижней челюсти остается менее года. В 3-й стадии уже II и III позвонки имеют по­лукруглую вогнутость, что может быть показателем активного роста в этом же году. В 5-й стадии II— V позвонки имеют вдавления и более квадратную форму — рост практически за­вершен. На 6-й стадии II—VI позвонки имеют квадратную форму с вогнутыми верхней и нижней границами — рост окончательно завершен. 4-я стадия сопровождается появле­нием вогнутости у II, III и IV позвонков. Потенциал роста чуть ниже, чем в предыдущей стадии, причем у девочек она совпадает с началом месячных циклов.

Исследование функционального состояния зубочелюстно-лицевой системы. Взаимообус­ловленность формы и функции проявляется как в период развития и формирования зубо­челюстной системы, так и в течение всей жизни человека. Зубочелюстная система испы­тывает постоянное воздействие различных внутренних и внешних факторов, под влияни­ем которых меняется функция, а соответственно и форма составляющих её тканей и орга­нов: губ, щёк, языка, жевательных и мимических мышц, височно-нижнечелюстных суста­вов, мягкого нёба, мышц дна полости рта и глотки. Такие изменения могут отрицательно сказываться на состоянии зубных рядов и челюстей, результатом чего являются многооб­разные аномалии прикуса и их сочетания.

Чтобы ортодонтическое лечение было успешным, а его результаты устойчивыми, необ­ходимо обращать внимание не только на отдельные зубы, зубные ряды и окружающие тка­ни, но и на другие вышеперечисленные компоненты, в том числе на качество и способ произношения звуков речи. В ортодонтии применяют различные методы, определяющие состояние зубочелюстной системы и позволяющие судить о необходимости перестройки тех или иных функций.


90 Глава 3- Классификации зубочелюстных аномалий и методы диагностики в ортодонтии

Выполнение сложных функций периодонта было бы невозможно без существования в его ткани большого количества нервных волокон и чувствительных нервных окончаний. Основ­ная масса нервных окончаний, как правило, заложена в самих пучках плотной соединитель­ной ткани периодонта, хотя их можно встретить и в прослойках рыхлой соединительной тка­ни. Периодонт наиболее богат чувствительной иннервацией в области верхушки корня. Зна­чительно меньше нервных окончаний наблюдается в периодонте пришеечной трети корня.

Периодонт с его многочисленными нервными окончаниями наряду со слизистой обо­лочкой полости рта и жевательными мышцами представляет собой рефлексогенное поле, раздражение которого может быть причиной как внутри-, так и внесистемных рефлексов. К числу последних следует отнести рефлексы на жевательную мускулатуру, регулирующие силу её сокращения. С этих позиций можно говорить о периодонте как о регуляторе жева­тельного давления.

Рефлексы, возникающие в области зубочелюстной системы, функциональные жевательные звенья. При попадании пищи в полость рта происходит раздражение находящихся в слизис­той оболочке рецепторов осязательной, температурной и вкусовой чувствительности. Далее импульсы от рецепторов по второй и третьей ветвям тройничного нерва поступают в продол­говатый мозг, где находятся чувствительные ядра. От этих ядер начинается второй нейрон чувствительной части тройничного нерва, который направляется к зрительному бугру. От зрительного бугра начинается третий нейрон, направляющийся к чувствительной зоне коры головного мозга, откуда эфферентные импульсы направляются также по ветвям трой­ничного нерва к жевательным мышцам. Находящиеся в жевательных мышцах соответству­ющие нервные приборы (мышечное чувство) регулируют движения нижней челюсти и силу сокращения мышц. Вся эта рефлекторная деятельность подчинена корковым влияниям.

Функция жевательной мускулатуры и нервная рецепция проявляются в зависимости от положения отдельных групп зубов в зубной дуге. С этой точки зрения в зубочелюстной си­стеме целесообразно выделить функциональные звенья в области передних и боковых зу­бов. В жевательное звено включаются следующие единицы или части (рис. 92, 93): 1 — опорная часть (периодонт), 2 — моторная часть (мускулатура), 3 — нервно-регулирую­щая часть, 4 — соответствующие зоны васкуляризации и иннервации, обеспечивающие питание органов и тканей жевательного звена и обменные процессы в них.

В норме в жевательном звене происходит координированное взаимодействие между опорной частью (периодонт), моторной (мускулатура) и нервно-регулирующей частью. В согласованности функций отдельных частей жевательного звена важную роль играет нервная рецепция жевательной мускулатуры, периодонта и слизистой оболочки полости рта. Из рефлексов, возникающих в области зубочелюстной системы в процессе жевания, можно выделить следующие: периодонтомускулярный, гингивомускулярный, миотатиче-ский и взаимосочетанные.

Жевательные звенья можно классифицировать в зависимости от состояния их отдель­ных элементов следующим образом. По состоянию опорных тканей: жевательное звено с интактными зубами, с аномалийным расположением зубов, с зубами, пораженными ка­риесом, пародонтитом, с частичным или полным отсутствием зубов, с зубными протеза­ми. В процессе функции жевания имеет место сочетание различных рефлексов. Особого внимания заслуживает совокупность рефлексов, связанных с разобщением прикуса, кото­рая играет важную роль в клинике ортодонтии.

Периодонтомускулярный рефлекс проявляется во время жевания естественными зубами, при этом сила сокращения жевательной мускулатуры регулируется чувствительностью ре­цепторов периодонта.

Гингивомускулярный рефлекс осуществляется после потери зубов, когда сила сокраще­ния жевательной мускулатуры регулируется рецепторами слизистой оболочки десны и альвеолярных отростков (рис. 93), на которые опирается базис протеза или ортодонтиче-ского аппарата.

Миотатические рефлексы проявляются при функциональных состояниях, связанных с растяжением жевательной мускулатуры (см. рис. 358). Начало миотатическому рефлексу


33. Диагностика



Рис. 92. Схема функционального жевательного Рис. 93. Схема жевательного звена с регуляцией
звена: / — опорная часть (периодонт), 2 — мо- функции через периодонтомускулярный реф-
торная часть (мускулатура), 3 — нервно-регули- леке с верхней челюсти (/), через гингивомуску-
рующая часть, 4 — система кровеносных сосудов лярный рефлекс с нижней челюсти (II), т.е.
и трофической иннервации. при наличии съёмного протеза или ортодонтиче-

ской пластинки.

дают импульсы, возникающие в рецепторах, находящихся непосредственно в жевательных мышцах и в их сухожилиях. Эти рецепторы раздражаются при растяжении мышц, вслед­ствие чего последние рефлекторно сокращаются. Чем больше опущена нижняя челюсть, тем больше растягивается жевательная мускулатура. В ответ на растяжение мышц наступа­ет их рефлекторное сокращение; процесс растяжения мышц проявляется в изменении их тонуса как в статическом состоянии, так и во время функции.

Физиологические изменения зубов и пародонта. Форма, структура зубов и состояние па-родонта не постоянны, под влиянием различных функциональных воздействий они меня­ются и при физиологических условиях. Эти изменения проявляются в стирании, в появле­нии подвижности и смещаемости в направлении жевательной плоскости, в возникнове­нии патологического прикуса, в отслаивании эпителия и в легкой атрофии зубных ячеек. В результате стирания жевательной поверхности «рабочие» места зубов постепенно от­шлифовываются, крутость их уменьшается, борозды жевательной поверхности становятся меньшими и постепенно исчезают. В результате стирания жевательной поверхности на зу­бах возникают острые грани, эмалевые полоски, в дентине образуются плоские дефекты. Это уменьшает при жевании нагрузку на периодонт, так как для жевания острыми зубами требуется значительно меньшая сила. В результате такого стирания прикус становится бо­лее глубоким, соприкасается значительно большая часть жевательных поверхностей, а го­ризонтально направленная сила, действующая на зубы, значительно уменьшается.

Стирание зависит от типа жевания, от состава пищи и от устойчивости зубов. В случае ортогнатического прикуса обнаруживается более значительное стирание на передних зу-



92 Глава 3- Классификации зубочелюстных аномалий и методы диагностики в ортодонтии

Рис. 94. Стирание коронки зуба в различном возрасте.

бах, при глубоком прикусе — на молярах. По степени стирания можно делать выводы и от­носительно возраста человека. До 30-летнего возраста стирание ограничивается эмалью, на резцах, на клыках и на коронках моляров возникают борозды. В 40-летнем возрасте у хорошо жующих людей стирание доходит до дентина, который хорошо из-за желтовато­го цвета. В 50-летнем возрасте дентин на большей поверхности становится обнажённым и имеет темно-коричневый цвет, коронка зуба становится немного короче. Возрастные особенности физиологического стирания представлены на рисунке 94. К 70-летнему воз­расту у хорошо жующих людей стирание приближается к полости зуба.

Жевательная эффективность и методы её определения. Одним из показателей состояния зубочелюстной системы является жевательная эффективность. Некоторые клиницисты, в частности С.Е.Гельман, используют вместо этого термин «жевательная мощность». Но мощностью в механике называется работа, производимая в единицу времени, она из­меряется в килограммах. Работа же жевательного аппарата может быть измерена не в абсо­лютных единицах, а в относительных, т.е. по степени измельчения пищи в полости рта в процентах. Поэтому правильнее пользоваться понятием «жевательная эффективность». Таким образом, под жевательной эффективностью следует понимать степень измельчения определённого объема пищи за определённое время. Методы определения жевательной эффек­тивности можно разделить на статические, динамические (функциональные).

Статические методы определения жевательной эффективности используются при непо­средственном осмотре полости рта, когда оценивают состояние каждого зуба и всех имею­щихся и заносят полученные данные в специальную таблицу, в которой доля участия каж­дого зуба в функции жевания выражена соответствующим коэффициентом. Такие табли­цы предложены многими авторами, но в нашей стране чаще пользуются методами Н.И.Агапова и И.М.Оксмана.

В таблице Н.И.Агапова за единицу функциональной эффективности принят боковой резец верхней челюсти (табл. 4).

В сумме функциональная ценность зубных рядов составляет 100 единиц. Потеря одно­го зуба на одной челюсти приравнивается (за счет нарушения функции его антагониста) к потере двух одноимённых зубов. В таблице 4 (по Н.И.Агапову) не учитываются зубы му­дрости и функциональное состояние оставшихся зубов.

Таблица 4

Таблица коэффициентов зубов по Н.И.Агапову

 

Зубы верхней и нижней челюстей               Сумма в единицах
Коэффициенты (в единицах)               50 50
Всего  

33- Диагностика



Таблица 5

Таблица коэффициентов зубов по И.М.Оксману

 

 

Зубы                 Сумма в единицах
Коэффициенты (в единицах) верхняя челюсть                  
нижняя челюсть                  
Всего  

И.М.Оксман предложил таблицу для определения жевательной способности зубов, в ко­торой коэффициенты основаны на учёте анатомо-физиологических данных: площади ок-клюзионных поверхностей зубов, количества бугров, числа корней и их размеров, степени атрофии альвеолы и выносливости зубов к вертикальному давлению, состояния пародонта и резервных сил нефункционирующих зубов. В этой таблице боковые резцы также принима­ются за единицу жевательной эффективности, зубы мудрости верхней челюсти (трёхбугро-вые) оцениваются в 3 единицы, нижние зубы мудрости (четырёхбугровые) — в 4 единицы. В сумме получается 100 единиц (табл. 5). Потеря одного зуба влечёт за собой потерю функции его антагониста. При отсутствии зубов мудрости следует принимать за 100 единиц 28 зубов.

С учётом функциональной эффективности жевательного аппарата следует вносить по­правку в зависимости от состояния оставшихся зубов. При заболеваниях пародонта и по­движности зубов I или II степени их функциональная ценность снижается на четверть или наполовину. При подвижности зуба III степени его ценность равна нулю. У больных с ос­трыми или обострившимися хроническими периодонтитами функциональная ценность зубов снижается наполовину или равняется нулю.

Кроме того, важно учитывать резервные силы зубочелюстной системы. Для учёта ре­зервных сил нефункционирующих зубов следует отмечать дополнительно дробным чис­лом процент потери жевательной способности на каждой челюсти: в числителе — для зу­бов верхней челюсти, в знаменателе — для зубов нижней челюсти. Примером могут слу­жить две следующие зубные формулы:






При первой формуле потеря жевательной способности составляет 52%, но имеются ре­зервные силы в виде нефункционирующих зубов нижней челюсти, которые выражаются при обозначении потери жевательной способности для каждой челюсти как 26/0%.

При второй формуле потеря жевательной способности составляет 59% и нет резервных сил в виде нефункционирующих зубов. Потеря жевательной способности для каждой че­люсти в отдельности может быть выражена как 26/30%. Прогноз восстановления функции при второй формуле менее благоприятный.

Для приближения статического метода к клинической диагностике В.К.Курляндский предложил ещё более детализированную схему оценки жевательной эффективности, кото­рая получила название одонтопародонтограммы. Пародонтограмма представляет собой схе­му-чертёж, в которую заносят данные о каждом зубе и его опорном аппарате. Данные в виде условных обозначений, полученных в результате клинических обследований, рентгенологи­ческих исследований и гнатодинамометрии, заносятся в специальную схему-чертёж.

Функциональные (динамические) методы определения жевательной эффективности. Эф­фективность функции жевания зависит от ряда факторов: наличия зубов и числа их арти­кулирующих пар, поражённости зубов кариесом и его осложнениями, состояния пародон­та и жевательных мышц, общего состояния организма, нервно-рефлекторных связей, слю­ноотделения и качественного состава слюны, а также от размера и консистенции пищево­го комка. При патологических явлениях в полости рта (кариес и его осложнения, пародон-тит и пародонтоз, дефекты зубных рядов, зубочелюстные аномалии) морфологические на­рушения, как правило, связаны с функциональной недостаточностью.


94 Глава 3- Классификации зубочелюстных аномалий и методы диагностики в ортодонтии

Жевательные пробы. Christiansen в 1923 г. впервые разработал их методику. Обследуемо­му дают для жевания три одинаковых цилиндра из кокосового ореха. После 50 жеватель­ных движений обследуемый выплёвывает разжёванные орехи в лоток; их промывают, вы­сушивают при температуре 100° в течение 1 ч и просеивают через 3 сита с отверстиями раз­ных размеров. По количеству оставшихся в сите непросеявшихся частиц судят об эффек­тивности жевания. Методика жевательной пробы Христиансена в дальнейшем была моди­фицирована в нашей стране С.Е.Гельманом в 1932 г.

Жевательная проба Гельмана. С.Е.Гельман предложил определять эффективность жева­ния не по количеству жевательных движений, как Christiansen, а за период времени жева­ния 50 с. Для получения жевательной пробы требуется спокойная обстановка. Следует подготовить расфасованный миндаль, чашку (лоток), стакан с кипячёной водой, стеклян­ную воронку диаметром 15x15 см, марлевые салфетки размером 20x20 см, водяную баню или кастрюлю, металлическое сито с отверстиями величиной 2,4 мм, весы с разновесом.

Обследуемому дают для жевания 5 г ядер миндаля и после указания «начните» отсчиты­вают 50 с. Затем обследуемый сплёвывает пережёванный миндаль в приготовленную чаш­ку, прополаскивает рот кипячёной водой (при наличии съемного протеза прополаскивает и его) и также сплёвывает её в чашку. В ту же чашку добавляют 8—10 капель 5% раствора сулемы, после чего процеживают содержимое чашки через марлевые салфетки над ворон­кой. Оставшийся на марле миндаль ставят на водяную баню для просушивания; при этом следят, чтобы не пересушить пробу, так как она может потерять вес. Проба считается вы­сушенной, когда её частицы при разминании не склеиваются, а разъединяются. Частицы миндаля тщательно снимают с марлевой салфетки и просеивают через сито. При интакт-ных зубных рядах вся жевательная масса просеивается через сито, что свидетельствует о 100% эффективности жевания. При наличии остатка в сите его взвешивают и с помощью пропорции определяют процент нарушения эффективности жевания, т.е. отношение ос­татка ко всей массе жевательной пробы. Так, например, если в сите осталось 1,2 г, то про­цент потери эффективности жевания будет равен:

5: 100- 1,2:х; х* (100-1,2): 5 = 24%.

Физиологическая жевательная проба по Рубинову. И.С.Рубинов считает более физиоло­гичным ограничиться для жевательной пробы одним зерном лесного ореха весом 800 мг. Период жевания определяется по появлению рефлекса глотания и равен в среднем 14 с.

При возникновении глотательного рефлекса массу сплёвывают в чашку; дальнейшая ее обработка соответствует методике Гельмана. В случаях затруднения разжёвывания ядра ореха И.С. Рубинов рекомендует применять для пробы сухарь; время жевания сухаря до по­явления рефлекса глотания равно в среднем 8 с. При этом следует указать, что разжёвыва­ние сухаря вызывает комплекс двигательных и секреторных рефлексов, способствующих лучшему усвоению пищевого комка.

При различных нарушениях в полости рта (кариозное разрушение зубов, их подвиж­ность, дефекты зубных рядов, аномалии прикуса и др.) период жевания удлиняется. Про­бами можно также установить эффективность протезирования в зависимости от конструк­ции протезов и их качества.

Л.М.Демнер предлагает взвешивать всю пережёванную массу, как оставшуюся в сите после ее просеивания, так и прошедшую через сито с целью выявления количества пище­вых частиц, оставшихся в полости рта или незаметно проглоченных при жевательной про­бе.

Однако в проведении этих проб есть недостатки. В методике Христиансена проба дела­ется после 50 жевательных движений. Эта цифра, вне всякого сомнения, произвольна, ибо одному человеку в зависимости от его жевательного стереотипа необходимо для измельче­ния пищи 50 жевательных движений, а другому достаточно, например, 30. С.Е.Гельман по­пытался регламентировать пробу во времени, однако не учёл то обстоятельство, что раз­ные индивидуумы до различной степени измельчают пищу, т.е. одни люди проглатывают более измельчённую пищу, другие — менее, и это является их индивидуальной нормой.


33. Диагностика



Рис. 95. Идеальная окклюзия при ортогнатическом прикусе: двух- и трёхточечные контакты на опор­ных бугорках зубов нижней челюсти и противостоящих им антагонистах верхней челюсти (обозначе­ны жёлтым цветом).

По методике И.С.Рубинова о жевательной эффективности судят по времени разжёвы­вания 0,8 г лесного ореха до появления рефлекса глотания. Эта методика лишена указан­ных выше недостатков, однако позволяет судить о восстановлении эффективности лишь при безупречной адаптации к протезам.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...