Резонансно-туннельный диод.
В общем случае резонансно-туннельный диод представляет собой периодическую структуру, которая состоит из последовательно расположенных квантовых колодцев, разделенных потенциальными барьерами, с электрическими контактами к двум крайним противоположным областям. Чаще всего это двухбарьерные структуры с одним квантовым колодцем и симметричными характеристиками барьеров, поскольку по мере увеличения количества колодцев все труднее реализовать условия для согласованного резонансного переноса носителей заряда. Рис. 5 - Условное обозначение резонансно-туннельного диода (а), его эквивалентная схема (б), вольт-амперная и вольт-фарадная характеристики (в). Емкость является чрезвычайно важной при определении быстродействия прибора. За исключением области напряжения вблизи токового резонанса она приблизительно равна емкости, рассчитанной для нелегированного разделительного слоя и обедненного слоя прибора. Пик емкости в области отрицательного дифференциального сопротивления обусловлен резонансными электронами, накопленными в яме. Основной особенностью резонансно-туннельных диодов является наличие на его вольт-амперной характеристике области отрицательного дифференциального сопротивления, которая является основой для большинства его практических применений. Наиболее важные электрические параметры: пиковое значение плотности тока (peak current density) и пиковое напряжение (peak voltage) – напряжение в области пика плотности тока, долинная плотность тока в минимуме (valley current density), отношение этих плотностей тока (peak-to-valley ratio).
Псевдоморфные и метаморфные гетероструктуры. Правило Вегарда. Транзистор с высокой подвижностью электронов (HEMT) — полевой транзистор, в котором для создания канала используется контакт двух полупроводниковых материалов с различной шириной запрещенной зоны (вместо легированной области как у обычных МОП-транзисторов). В отечественной и зарубежной литературе такие приборы часто обозначают HEMT — от англ. High Electron Mobility Transistor. Также в зависимости от структуры используются аналогичные названия: HFET, HEMFET, MODFET, TEGFET, SDHT. Другие названия этих транзисторов: полевые транзисторы с управляющим переходом металл — полупроводник и гетеропереходом, ГМеП транзисторы, полевые транзисторы с модулированным легированием, селективно-легированные гетероструктурные транзисторы (СЛГТ).
Структура HEMT транзистора. Псевдоморфный. ТВПЭ, в котором правило соответствия параметра кристаллической решётки слоёв гетероперехода не соблюдается, называется псевдоморфным (пТВПЭ или pHEMT). Для этого слой одного из материалов делается очень тонким — настолько, что его кристаллическая решётка попросту растягивается до соответствия другому материалу. Такой способ позволяет изготавливать структуры с увеличенной разницей в ширине запрещенной зоны, что недостижимо другими путями. Такие приборы обладают улучшенной производительностью. Возможный способ адаптации полупроводниковых структур с разными параметрами кристаллической решетки состоит в том, чтобы создать условия, в которых кристаллическая решетка одного из компонентов гетероструктуры сожмется или растянется до необходимой величины. Для этого слой одного из материалов делается очень тонким — настолько, что его кристаллическая решётка изменяется и приходит в соответствие другому материалу. Гетеропереход, в котором правило соответствия параметров кристаллической решётки слоёв гетероперехода не соблюдается, называется псевдоморфным гетеропереходом. C использованием псевдоморфных переходов можно изготавливать гетероструктуры с увеличенной разницей в ширине запрещенной зоны, что недостижимо другими путями.
Метаморфный. Другой способ совмещения материалов с разными решётками — помещение между ними буферного слоя. Это применяется в метаморфном ТВПЭ (мТВПЭ или mHEMT). Буферный слой представляет собой AlInAs, с концентрацией индия подобранной таким образом, что решётка буферного слоя может быть согласована как подложкой GaAs, так и с каналом InGaAs. Преимуществом такой структуры является возможность выбора практически любой концентрации индия для создания канала, то есть прибор может быть оптимизирован для различных применений (низкая концентрация индия обеспечивает низкий шум, а высокая — бо́льшую степень усиления). Еще один способ совмещения материалов с разными решётками — помещение между ними буферного слоя. Материал буферного слоя подбирается таким образом, чтобы его решетка могла быть согласована как с одним, так и с другим материалами гетероперехода. Такие структуры принято называть метаморфными гетеропереходами. Правило Вегарда. Апроксимированное эмпирическое правило, которое гласит, что существует линейная зависимость при постоянной температуре между свойствами кристаллической решётки сплава и концентрацией отдельных его элементов. Таким образом, параметры кристаллической решётки () твёрдого раствора (сплава) материалов с одинаковой структурой решётки, могут быть найдены путём линейной интерполяции между параметрами решётки исходных соединений, например для твёрдых растворов SixGe1-x и InPxAs1-x: . Можно также расширить это соотношение для определения энергии запрещенной зоны полупроводника. Используя, как и в предыдущем случае, InPxAs1-x, можно найти выражение, которое описывает зависимость энергии запрещенной зоны полупроводника от соотношения её составляющих и параметра где -параметр прогиба(нелинейности), имеющий тем большее значение, чем сильнее различие периодов решёток компонентов:
Модулированное легирование и транзисторы с высокой подвижностью электронов (НЕМТ). Транзистор с высокой подвижностью электронов (ТВПЭ, HEMT) — полевой транзистор, в котором для создания канала используется контакт двух полупроводниковых материалов с различной шириной запрещенной зоны (вместо легированной области как у обычных МОП-транзисторов).
На рисунке представлена структура HEMT-транзистора в разрезе. На полуизолирующей подложке арсенида галлия (GaAs) выращивается нелегированный буферный слой GaAs. На нем наращивается тонкий слой полупроводника с иной шириной запрещенной зоны — InGaAs, такой, что образуется область двумерного электронного газа (2DEG). Сверху слой защищается тонким спейсером на основе арсенида алюминия-галлия AlxGa1−xAs (далее AlGaAs). Выше следуют легированный кремнием слой n-AlGaAs и сильнолегированный слой n+-GaAs под контактными площадками стока и истока. Контакт затвора приближен к области двумерного электронного газа. В общем случае, для создания проводимости в полупроводниках используются легирующие примеси. Однако, получаемые электроны проводимости испытывают столкновения с примесными остовами, что отрицательно сказывается на подвижности носителей и быстродействии прибора. В ТВПЭ этого удается избежать за счет того, что электроны с высокой подвижностью генерируются на гетеропереходе в области контакта высоколегированного донорного слоя N-типа с широкой запрещенной зоной (в нашем примере AlGaAs) и нелегированного канального слоя с узкой запрещенной зоной без каких-либо легирующих примесей (в данном случае GaAs). Электроны, образующиеся в тонком слое N-типа, полностью перемещаются в слой GaAs, обедняя слой AlGaAs. Обеднение происходит из-за изгиба потенциального рельефа в гетеропереходе — между полупроводниками с разной шириной запрещенной зоны образуется квантовая яма. Таким образом, электроны способны быстро передвигаться без столкновений с примесями в нелегированном слое GaAs. Образуется очень тонкая прослойка с большой концентрацией высокоподвижных электронов, обладающих свойствами двумерного электронного газа (ДЭГ). Сопротивление канала очень низкое, и подвижность носителей в нём высока. Так же, как в других типах полевых транзисторов, приложенное к затвору ТВПЭ напряжение изменяет проводимость канального слоя.
Принцип действия ТВПЭ — аналогичен принципу действия МеП-транзистора. Между металлическим затвором и расположенным под ним слоем из AlGaAs, образуется управляющий переход Металл - Полупроводник (далее по тексту Ме — п/п). Обедненная область этого перехода располагается, в основном, в слоях AlGaAs. Канал нормально открытого транзистора при формируется в слое нелегированного GaAs на границе гетероперехода в области накопления двумерного электронного газа. Под действием управляющего напряжения изменяется толщина обедненной области перехода Ме — п/п, концентрация электронов в ДЭГ и ток стока. Электроны поступают в область накопления из истока. При достаточно большом (по модулю) отрицательном обедненная область расширяется настолько, что перекрывает область насыщения электронов. Ток стока при этом прекращается. В нормально закрытом транзисторе вследствие меньшей толщины верхнего слоя AlGaAs при проводящий канал отсутствует, так как область насыщения двумерного электронного газа перекрыта обедненной областью управляющего перехода. Канал возникает при некотором положительном , когда обедненная область управляющего перехода сужается настолько, что её нижняя граница попадает в область накопления электронов.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|