Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Термоконтактные явления.Явление Зеебека. Явление Пельтье.




Эффект Зеебека — явление возникновения ЭДС в замкнутой электрической цепи, состоящей из последовательно соединённых разнородных проводников, контакты между которыми находятся при различных температурах.

Эффект Зеебека также иногда называют просто термоэлектрическим эффектом.

Эффект Зеебека состоит в том, что в замкнутой цепи, состоящей из разнородных проводников, возникает термо-ЭДС, если места контактов поддерживают при разных температурах. Цепь, которая состоит только из двух различных проводников, называется термоэлементом или термопарой.

Величина возникающей термоэдс в первом приближении зависит только от материала проводников и температур горячего () и холодного () контактов.

В небольшом интервале температур термоэдс E можно считать пропорциональной разности температур: где — термоэлектрическая способность пары (или коэффициент термоэдс).

В простейшем случае коэффициент термоэдс определяется только материалами проводников, однако, строго говоря, он зависит и от температуры, и в некоторых случаях с изменением температуры меняет знак.

Более корректное выражение для термоэдс:

Величина термоэдс составляет милливольты при разности температур в 100 К и температуре холодного спая в 0 °С (например, пара медь-константан даёт 4,25 мВ, платина-платинородий — 0,643 мВ, нихром-никель — 4,1 мВ)[2].

Эффект Пельтье — термоэлектрическое явление, при котором происходит выделение или поглощение тепла при прохождении электрического тока в месте контакта (спая) двух разнородных проводников. Величина выделяемого тепла и его знак зависят от вида контактирующих веществ, направления и силы протекающего электрического тока:

Q = ПАBIt = (ПBA)It, где

Q — количество выделенного или поглощённого тепла;

I — сила тока;

t — время протекания тока;

П — коэффициент Пельтье, который связан с коэффициентом термо-ЭДС α вторым соотношением Томсона [1] П = αT, где Т — абсолютная температура в K.

Эффект открыт Ж. Пельтье в 1834 году, суть явления исследовал несколькими годами позже — в 1838 году Ленц, который провёл эксперимент, в котором он поместил каплю воды в углубление на стыке двух стержней из висмута и сурьмы. При пропускании электрического тока в одном направлении капля превращалась в лёд, при смене направления тока — лёд таял, что позволило установить, что в зависимости от направления протекающего в эксперименте тока, помимо джоулева тепла выделяется или поглощается дополнительное тепло, которое получило название тепла Пельтье. Эффект Пельтье «обратен»эффекту Зеебека.

Эффект Пельтье более заметен у полупроводников, это свойство используется в элементах Пельтье.

Причина возникновения явления Пельтье заключается в следующем. На контакте двух веществ имеется контактная разность потенциалов, которая создаёт внутреннее контактное поле. Если через контакт протекает электрический ток, то это поле будет либо способствовать прохождению тока, либо препятствовать. Если ток идёт против контактного поля, то внешний источник должен затратить дополнительную энергию, которая выделяется в контакте, что приведёт к его нагреву. Если же ток идёт по направлению контактного поля, то он может поддерживаться этим полем, которое и совершает работу по перемещению зарядов. Необходимая для этого энергия отбирается у вещества, что приводит к охлаждению его в месте контакта. При прохождении через ТЭМ постоянного электрического тока возникает разность температур (dT=Th-Tc) между его сторонами: одна пластина (холодная) охлаждается, а другая (горячая) нагревается. По сути элемент Пельтье является своебразным тепловым насосом. При использовании модуля Пельтье необходимо обеспечить эффективный отвод тепла с его горячей стороны, например, с помощью воздушного радиатора или водяного теплообменника (водоблока). Здесь надо учесть, что отводить придется не только "перекачиваемую" теплоту, но и добавляемую (примерно 50%) самим модулем. Если поддерживать температуру горячей стороны модуля на уровне температуры окружающей среды, то на холодной стороне можно получить температуру, которая будет на десятки градусов ниже. В высококачественных серийных ТЭМ известных производителей разность температур может достигать 74 град на одном каскаде. Модуль является обратимым, т.е. при смене полярности постоянного тока горячая и холодная пластины меняются местами.

Вопрос 67 Атомное ядро

Изотопы -Ядра с одинаковыми , но разными (т. е. с разными числами

нейтронов)

N=A-Z

Атомное ядро состоит из элементарных частиц - протонов и нейтронов.

1. Капельная модель ядра (1936; Н. Бор и Я. И. Френкель). Капельная модель ядра является первой моделью. Она основана на аналогии между поведением нуклонов в ядре и поведением молекул в капле жидкости.

2. Оболочечная модель ядра (1949-1950; американский физик М. Гепперт-Майер (1906-1975) и немецкий физик X. Иенсен (1907-1973)). Оболочечная модель предполагает распределение нуклонов в ядре по дискретным энергетическим уровням (оболочкам), заполняемым нуклонами согласно принципу Паули, и связывает устойчивость ядер с заполнением этих уровней.

3. обобщенная модель ядра (синтез капельной и оболочечной моделей), оптическая модель ядра (объясняет взаимодействие ядер с налетающими частицами) и другие модели.

Под радиоактивностью понимают способность некоторых атомных ядер самопроизвольно превращаться в другие ядра с испусканием различных видов радиоактивных излучений и элементарных частиц. Е стественная радиоактивность наблюдается у неустойчивых изотопов, существующих в природе, а искусственная наблюдается у изотопов, полученных посредством ядерных реакций. Принципиального различия между этими двумя типами радиоактивности нет, так как законы радиоактивного превращения в обоих случаях одинаковы.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...