Блок-схема и функции основных узлов атомно-эмиссионного спектрометра. Основные характеристики атомно-эмиссионных спектрометров.
Блок-схема атомно-эмиссионного спектрометра. В основе атомно-эмиссионного анализа лежат спектры излучения, которое испускает анализируемое вещество. Для того чтобы получить такие спектры, используются эмиссионные спектрометры.
тор; 4-детектер; 5- регистрирующее устройтво. Анализируемый образец, прошедший этап пробоподготовки, вносят в источник возбуждения, где происходит его испарение и атомизация, а также возбуждение агомов. Внешние валентные электроны атомов анализируемого вещества благодаря энергии, поглощенной в источнике возбуждения, переходят на более высокие энергетические уровни, чем в основном состоянии. Самопроизвольный возврат электронов из неустойчивого возбужденного состояния на основной энергетический уровень, соответствующий минимуму внутренней энергии анализируемых атомов, сопровождается испусканием излучения с характеристическими для каждого вида атомов длинами волн. Это излучение, пройдя модулирующее устройство, попадает на анализатор. Механический или электронный модулятор прерывает излучение и регистрируемый на самописце сигнал становится сигналом переменного тока фиксированной частоты. Это позволяет проще усиливать сигнал (т.к. усилители переменного тока более просты и удобны в работе) и снизить погрешности измерений. В анализаторе, называемом также спектральным прибором, монохроматором, производится разделение излучения, поступающего от источника возбуждения, по частотам и выделение спектральных линий определяемых элементов. Эти линии фиксируются детектором, т.е. приемником излучения, и регистрируются самописцем или фотографическим методом.
Устройство атомизации вещества и возбуждения спектров. Ватомно-эмиссионной спектроскопии чаще всего применяются методы, в которых атомизация и возбуждение анализируемого вещества совмещены. Наиболее распространенными источниками атомизациии возбуждения являются: пламя, электрическая искра, различные формы тлеющего разряда, а в последние годы — различные виды безэлектродных высокочастотных разрядов индуктинно-связанная плазма, микроволновый разряд, а также лазерные атомизаторы. 06щее требование ко всем источникам возбуждения — они должны обеспечивать необходимую яркость спектра и быть достаточно стабильными. Пламя. Именно способность давать яркий и стабильный спектр в сочетании с простотой регулировки и надежности работы является причиной широкого распространения пламенных источникам возбуждения и т.н. пламенной фотометрии. Атомизация вещества и возбуждение его спектра и пламени имеет в основном термический характер. В аналитической практике для получения пламени в т.н. плазменном атомизаторе используют газовые смеси. Дуга. Электрическая дуга — ЭТО разряд при сравнительно большой силе тока (5-7А) и небольшом напряжении (50-80В). Разряд возникает между электродами анализируемого материала или между анализируемым образцем и электродом, не содержащим определяемых элементов. Температура дуги составляет 5000-6000С°, при угольных электродах— до 7000С°. В дуге удается получить спектры почти всех элементов. Для обеспечения непрерывности и стабильности горения дуги применяют специальные дуговые генераторы. Недостатками дуговой атомизации и возбуждения являются чрезмерная в некоторых случаях яркость и сравнительно невысокая воспроизводимость условий возбуждения, что ограничивает применение дугового возбуждения в качественном и особенно в количественном анализе. Существенным недостатком дуги является также значительное разрушение анализируемого образца.
Искра. Для получения искры используются специальные искровые генераторы, принципиальная схема одного из которых представлена на рис. Искра образуется между электродами 2 в аналитическом промежутке 1. Электроды подключены к конденсатору 4 через катушку индуктивности 3. На конденсатор подается напряжение со вторичной обмоткой повышающего трансформатора 5. Первичная обмотка трансформатора питается по сети напряжением 20 или 127 В через реостат 7. Для замены пробы лампу разбирают, заполняют чашу катода новой пробой, снова собирают лампу, заполняют инертным газом и вакуумируют. В рабочем состоянии ее охлаждают проточной водой. Индуктивно-связанная плазма. Плазма -- это частично или полностью ионизированный газ, образующийся в результате термической ионизации атомов и молекул при высоких температурах под действием электромагнитных полей большой напряженности при облучении газа потоками заряженных частиц высокой энергии. В плазме суммарная концентрация электронов и отрицательных ионов равна концентрации положительных ионов, вследствие чего ее результирующий пространственный заряд равен нулю.Для получения индуктивно-связанной плазмы (ИСП) используют высокочастотный генератор с рабочей частотой 27-56 МГц и потребляемой мощностью 1,0-1,5 кВт и специальную горелку - трехтрубчатый плазмотрон.
Анализаторы (монохроматоры или спектральные приборы) - устройства, предназначенные для разделения светового пучка на входящие в него монохроматические компоненты. Детектирование излучения в атомно-эмиссионных приборах может проводиться тремя методами: визуально, с использованием фотографических детекторов (пленки или стеклянные пластинки с нанесенным на них слоем фотоэмульсии-слоя желатина), с использованием фотоэлектрических детекторов(преобразуют световую энергию в электрический сигнал).
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|