Типы и хар-тер электронных переходов.
Для описания оптических спектров пользуются схемами, в которых энергетическое состояния атома, точнее уровни энергии валентных электронов, изображают отрезками, расстояние между которыми пропорционально разности их энергий. Расстояние между уровнями уменьшается по мере удаления от основного состояния и приближения к границе, соответствующей энергии ионизации, т.е. той энергии, приобретая которую внешний электрон покидает атом. Энергия каждого возбужденного состояния больше нуля. Разрешенные правилами отбора изменения энергетических состояний атома или иона, т.н. разрешенные энергетические переходы, изображают на диаграмме стрелками, соединяющими начальные и конечные уровни. Порции энергии, поглощаемые при возбуждении, равны разностям энергий соответствующих конечного и начального уровней DЕ например, Е1 – Е0, Е2 – Е0 переходы электронов с низкоэнергетических уровней на более энергетические уровни происходят только с поглощением энергии. Число допустимых энергетических состояний атомов изменяется периодически, по мере увеличения порядкового номера элемента. Наиболее просты схемы энергетических состояний элементов первой группы, имеющих по одному электрону на внешних оболочках при заполненных внутренних оболочках. Наиболее сложные схемы переходов переходных элементов, лантаноидов и др. элементов с недостроенными d- и f-подуровнями и с несколькими электронами на внешней оболочке. В пределах каждого периода таблицы Менделеева схема энергетических состояний атомов усложняется по мере увеличения атомного номера. При этом изменяется как разность соседних возбужденных уровней, так и энергия самого нижнего возбужденного уровня, называемого резонансным.
Элементы, заканчивающие периоды таблицы Менделеева, у которых внешние электронные оболочки заполнены, имеют наибольшие значения энергии ионизации и возбуждения резонансных ypoвней, а элементы, с которых начинаются периоды - наименьшие энергии ионизации и энергии возбуждения резонансного уровня. По мере увеличения номеров элементов их энергии ионизации и энергии резонансного уровня увеличиваются. В спектральном анализе возбуждение и ионизация атомов достигается их бомбардировкой быстрыми электронами, а также при взаимодействии атомов с излучением. При этом для ионизации атома необходимо, чтобы кинетическая энергия Ек, воздействующего электрона была равна или больше энергии ионизации данного элемента. Соответственно, возбуждение электронами происходит лишь тогда, когда их кинетическая энергия превышает энергию возбуждения соответствующего уровня. По мере увеличения Ек последовательно возбуждаются элементы, имеющие всё более высокие энергии возбуждения. Источниками электронов, возбуждающих оптические спектры в аналитической практике служат пламя, электрические разряды (дуга, искра) и др., в которых электроны приобретают энергию, соответствующую температуре от нескольких тысяч до нескольких десятков тысяч градусов. Взаимодействие с ЭМИ может приводить к ионизации или к переходам электронов на возбужденные уровни только при равенстве электромагнитной энергии, энергий ионизации или разности энергий верхнего и нижнего уровней возбужденного атома соответственно. Для возбуждения оптических спектров воздействием излучения применяют газоразрядные лампы и специальные лампы накаливания, которые испускают необходимый спектр излучения в зависимости от определяемых элементов. Совокупность различных порций энергии (квантов), которые могут быть поглощены атомами данного элемента при переходе их внешних электронов с более низких уровней на более высокие, образуется его спектр поглощения, состоящий из большого числа линий, имеющих длины волн l и частоты n, зависящие от разности соответствующих уровней.
Число наблюдаемых на опыте линий поглощения каждого элемента зависит от спектра источника света и от концентрации возбужденных и невозбужденных атомов или ионов в просвечиваемом объекте для наблюдения полного спектра поглощения необходим источник излучения, обладающий непрерывным спектром. Однако и часто используют источники, которые испускают лишь излучение, подходящее для наблюдения какой-то части линий поглощения. Спектр поглощения (атомной абсорбции), отображающий способность атомов каждого элемента поглощать только строго определенный набор длин волн, является характеристичным в такой же степени, как и спектр испускания (эмиссии), т.к. спектр испускания определяется той же системой энергетических состояний валентных электронов. Возникновение спектров эмиссии (испускания) связано с тем, что состояние поглотившего дополнительную энергию возбуждения, является неустойчивым. Возбужденные атомы, точнее электроны внешних оболочек, перешедшие на более высокие энергетические уровни примерно через 10-8 сек после возбуждения возвращаются в исходное состояние, отдавая избыточную энергию в виде эми с частотой (длиной волны), соответствующей энергии энергетических уровней, между которыми происходит переход (рис.1). Спектр испускания принято называть эмиссионным, когда излучающие атомы образуются главным образом при соударениях с частицами (возбуждение атомов происходит их бомбардировкой быстрыми электронами), и флуоресцентным, когда они образуются под действием излучения. Линейчатые спектры испускания и поглощения наблюдаются либо в виде узких полосок разной интенсивности, расположенных в порядке изменения длин волн, либо в виде такой же последовательности пиков разной высоты, зависящей от интенсивности. Особое значение в спектральном анализе имеют т.н. резонансные линии. Резонансные - линии, которые испускаются или поглощаются при переходах между основными энергетическим уровнем и самым низким возбужденным уровнем для которого такие переходы допускаются определенными правилами отбора. В оптическом спектре, в отличие от рентгеновского, серии спектральных линий перекрываются, сто затрудняет анализ спектра.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|