Условия и механизм атомизации и возбуждения в-ва в дуговой и искровой атомно-эмиссионной спектроскопии.
Дуга. Электрическая дуга -это разряд при сравнительно большой силе тока (5-7 А), при небольшом напряжении (50-80В). Разряд возникает между электродами анализируемого материала или между анализируемым образцом и электродом, не содержащим определяемых элементов. Температура дуги составляет 5000-6000С0, при угольных - до 7000С0. В дуге удается получить спектры почти всех элементов. Для обеспечения непрерывности и стабильности горения дуги применяют специальные дуговые генераторы. Недостатками дуговой атомизации и возбуждения являются чрезмерная в некоторых случаях яркость и сравнительно невысокая воспроизводимость условий возбуждения, что ограничивает применение дугового возбуждения в качественном особенно в количественном анализе. Существенным недостатком дуги является также значительное разрушение анализируемого образца. Искра. Для получения искры используются специальные искровые генераторы, принципиальная схема одного из которых представлена на рис
При достижении в аналитическом промежутке 1 напряжения пробоя между электродами, изготовленными из анализируемого материала, возникает электрическая искра, при которой с небольших участков поверхности электродов взрывообразно вырывается материал в виде струи горячего пара. Температура искры 7000-100000 С. При необходимости она может быть повышена до 120000 С и выше.
При искровой атомизации происходит возбуждение всех элементов. Основное достоинство искры - большая стабильность условий разряда и, следовательно, условий возбуждения, что необходимо при проведении количественного анализа. Искра, кроме того, не вызывает заметного разрушения образца. Лампы с полым катодом. Это двухэлектродные разборные лампы, наполненные аргоном или неоном под давлением от 0,1 до 20-30 мм рт.ст. Они подключаются к источнику стабилизированного напряжения и вакуумной установке. Катод 1 лампы (рис. 3б) изготовлен в виде стаканчика, расположенного в цоколе 3. Вблизи катода расположен анод 2 в виде стержня, трубки или кольца из толстой малибденовой или вольфрамовой проволоки или фольги. Пробу вносят в стаканчик катода и пропускают через нее ток от нескольких мА до 1,5 А при напряжении 100-200 Между катодом и анодом возникает тлеющий разряд с участием частиц, поступающих с полого катода и инертного газа. Положительные ионы инертного газа бомбардируют катод и анализируемую пробу, атомизируют их и возбуждают. Излучение через плоское кварцевое или стеклянное окно 4 колбы 5 поступает на анализатор. Спектр излучения содержит линии материала катода, пробы и инертного газа. Для замены пробы лампу разбирают, заполняют чашу катода новой пробой, снова собирают лампу, заполняют инертным газом и вакуумируют. В рабочем состоянии ее охлаждают проточной водой.
Блок-схема атомно-эмиссионного спектрометра. В основе атомно-эмиссионного анализа лежат спектры излучения, которое испускает анализируемое вещество. Для того чтобы получить такие спектры, используются эмиссионные спектрометры.
Анализируемый образец, прошедший этап пробоподготовки, вносят в источник возбуждения, где происходит его испарение и атомизация, а также возбуждение атомов. Внешние валентные электроны атомов анализируемого вещества благодаря энергии, поглощенной в источнике возбуждения, переходят на более высокие энергетические уровни, чем в основном состоянии. Самопроизвольный возврат электронов из неустойчивого возбужденного состояния на основной энергетический уровень, соответствующий минимуму внутренней энергии анализируемых атомов, сопровождается испусканием излучения с характеристическими для каждого вида атомов длинами волн. Это излучение, пройдя модулирующее устройство, попадает на анализатор. Механический или электронный модулятор прерывает излучение и регистрируемый на самописце сигнал становится сигналом переменного тока фиксированной частоты. Это позволяет проще усиливать сигнал (т.к. усилители переменного тока более просты и удобны в работе) и снизить погрешности измерений. В анализаторе, называемом также спектральным прибором, монохроматором, производится разделение излучения, поступающего от источника возбуждения, по частотам и выделение спектральных линий определяемых элементов. Эти линии фиксируются детектором, т.е. приемником излучения, и регистрируются самописцем или фотографическим методом. Устройство атомизации вещества и возбуждения спектров. Ватомно-эмиссионной спектроскопии чаще всего применяются методы, в которых атомизация и возбуждение анализируемого вещества совмещены. Наиболее распространенными источниками атомизациии возбуждения являются: пламя, электрическая искра, различные формы тлеющего разряда, а в последние годы — различные виды безэлектродных высокочастотных разрядов индуктинно-связанная плазма, микроволновый разряд, а также лазерные атомизаторы. 06щее требование ко всем источникам возбуждения — они должны обеспечивать необходимую яркость спектра и быть достаточно стабильными. Анализаторы (монохроматоры или спектральные приборы) - устройства, предназначенные для разделения светового пучка на входящие в него монохроматические компоненты. Детектирование излучения в атомно-эмиссионных приборах может проводиться тремя методами: визуально, с использованием фотографических детекторов (пленки или стеклянные пластинки с нанесенным на них слоем фотоэмульсии-слоя желатина), с использованием фотоэлектрических детекторов(преобразуют световую энергию в электрический сигнал).
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|