Пункт 8. Вычисление подходящих дробей.
В этом пункте мы будем внимательно наблюдать за поведением подходящих дробей
цепной дроби с целью научиться быстро их вычислять не связываясь с преобразованием многоэтажных выражений. Мишке косолапому понятно, что подходящая дробь d s , s > 1, получается из дроби d s -1 заменой в записи выражения d s -1 буквы q s -1 выражением q s -1 + 1/ q s . (Признаюсь честно, что это я погорячился, написав "мишке косолапому понятно". Лично мне, в свое время, для понимания этого потребовалось сделать над собой изрядное усилие. Ну, да я и не мишка косолапый.) Мы уже знаем из пункта 7, что если "многоэтажную" подходящую дробь упростить (посчитать), то получится некоторое рациональное число P / Q - "одноэтажная" дробь. Договоримся всегда буквой P s обозначать числитель подходящей дроби d s (числитель именно ее рационального значения, т.е. "одноэтажной" дроби), а буквой Q s - знаменатель. Давайте научимся быстро считать эти числители и знаменатели. Положим для удобства P 0 = 1, Q 0 = 0. (Это просто соглашение, не пугайтесь, на ноль делить никто не заставляет.) Имеем:
Видно, что получаются рекуррентные соотношения:
Просьба хорошенько запомнить эти соотношения вместе с начальными условиями P 0 = 1, Q 0 = 0, P 1 = q 1 , Q 1 = 1, ибо их использование значительно ускоряет процесс вычисления подходящих дробей и доставляет много других радостей. Сами соотношения очень легко доказать, если воспользоваться принципом математической индукции и головным мозгом. Проделайте это, пожалуйста, самостоятельно.
Пример. Вспомним разложение в цепную дробь числа 105/38 из предыдущего пункта и вычислим подходящие дроби. Имеем: Вычисления числителей и знаменателей подходящих дробей организуем в таблицу:
(1) Более того, вы зачем-то начали читать сноску к пустой клетке. Посмотрите внимательно. Вторая строчка этой таблицы - неполные частные - заполняется сразу после работы алгоритма Евклида, числа P 0 = 1, Q 0 = 0, P 1 = q 1 , Q 1 = 1 проставляются в таблицу автоматически. Две последние строки заполняются слева направо с использованием рекуррентных соотношений. Например, число 11 = P 3 в третьей строке возникло так: тройка, стоящая над ним, умножилась на тройку, стоящую перед ним, и к результату прибавилась стоящая впереди двойка, ибо P 3 = q 3 P 2 + P 1 = 3 · 3 + 2. После того, как в таблице уже стоит число 11, следующая клетка в этой строке заполняется числом 4 · 11 + 3 = 47, и т.д. Согласитесь, этот процесс гораздо быстрее и приятнее раскручивания многоэтажных дробей. Ответ:
- на пятом шаге (считая с нуля) подходящие дроби подошли к самому числу, прыгая вокруг него. Я имею ввиду то, что дроби с четными номерами больше исходного числа, а дроби с нечетными номерами - меньше, и последовательность подходящих дробей очень быстро сходится к самому числу. Это, конечно, не случайно, но об этих свойствах как раз чуть ниже и в следующем пункте. Я хотел было закончить здесь пункт 8, но человек - существо ужасно любопытное. Если он идет мимо забора за которым что-то попискивает, то он обязательно заглянет в щелочку, чтобы узнать, что это там пищит. Вот и сейчас любопытство взяло верх, и мне страшно хочется посчитать подходящие дроби разложения Ö 2 в цепную дробь из примера 1 предыдущего пункта. Не буду себя сдерживать и составлю таблицу:
Уже на шестом шаге я получил дробь 99/70 = 1,41428..., т.е. достиг точности, которую помнят только влюбленные в математику человеки - Ö 2» 1,4142; понадобилось же мне для этого две минуты и шесть секунд устных вычислений. Вот какой мощный аппарат - цепные дроби!
(1) Разложение в цепную дробь основания натуральных логарифмов впервые получил Эйлер, подметивший и доказавший закономерность в последовательности неполных частных. (2) Для последовательности неполных частных разложения в цепную дробь числа p в настоящее время неизвестно никакой закономерности и никаких ее свойств, кроме того, что эта последовательность заве-домо не периодическая (см. пункт 11).
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|