Отступление про Фибоначчи.
Фибоначчи - "Сын Боначчо" или Леонардо Пизанский (1180 - 1240), - известный средневековый математик-кроликовод, философ, купец и т.д. Путешествовал и торговал в странах востока, но, в отличие от тупых современных челноков, озабоченных только марксовской разностью Д ¢ - Д, где Д - деньги, Д ¢ - деньги штрих, изучал науку востока. По возвращению в Европу он записал собранные сведения, добавил много собственных исследований и издал книги "Практика геометрии" и "Книга абака". Последовательность Фибоначчи возникает у самого Леонардо при решении следующей задачи: Сколько пар кроликов может произойти от одной пары в течении года, если а) каждая пара каждый месяц порождает новую пару, которая со второго месяца становится производителем, и б) кролики не дохнут. Поразительным образом, демонстрируя единство мироздания, последовательность Фибоначчи появляется не только при изучении цепных дробей, но и во многих других разделах математики, физики, биологии, искусствоведения. Кроме порождения на свет этой замечательной последовательности и другого прочего, "Книга абака" была одним из решающих источников проникновения в Западную Европу десятичной системы счисления и арабской записи цифр. Честь и хвала безумцам, которые, порой в ущерб своему благосостоянию, сохраняют и развивают культуру целых поколений, безумцам, чья система ценностей не замкнута на шмотках, деньгах и развлечениях! Свойство 5. Для любой бесконечной цепной дроби, последовательность d 1 , d 2 , d 3 ,... сходится. Доказательство. Рассмотрим подпоследовательности:
Имеем:
т.к. Q 2 n +2 Q 2 n +1 > Q 2 n +1 Q 2 n . Значит, подпоследовательность дробей с четными номерами монотонно убывает. Аналогично, вторая подпоследовательность монотонно возрастает. Всякий член "четной" последовательности больше всякого члена "нечетной". Действительно, рассмотрим d 2 n и d 2 m +1 . Возьмем четное k такое, что k +1 > 2 n и k +1 > 2 m + 1. Тогда
Но ведь d k < d 2 n , в силу убывания последовательности "четных", а d k -1 > d 2 m +1 , в силу возрастания последовательности "нечетных". Значит, d 2 n > d k > d k -1 > d 2 m +1 , что и нужно. Получается, что обе последовательности монотонны и ограничены, следовательно, имеют пределы. Кроме того,
где F s - s -ый член последовательности Фибоначчи, следовательно пределы обеих подпоследовательностей совпадают. Итак, всякая бесконечная цепная дробь имеет некоторое значение. ¨ Свойство 6. Пусть a Î R раскладывается в цепную дробь, например, с помощью процесса взятия целых частей и "переворачивания" дробных (этот процесс предложен в пункте 7 после формулировки основной теоремы о цепных дробях), т.е. - результат очередного этапа процесса разложения. Тогда a лежит между d s -1 и d s , причем ближе к d s , чем к d s -1 . Доказательство. На (s +1)-ом шаге разложения мы заменяем q s на q s + 1/ a s +1 , поэтому имеем точное равенство:
a a s +1 Q s + a Q s -1 - a s +1 P s - P s -1 = 0. Преобразуем:
Это равенство означает, что разности в скобках разных знаков. Кроме того, Q s > Q s -1 , a s +1 > 1, значит
Свойство 7. Для любого a Î R, разложение в цепную дробь единственно.
Доказательство. Пусть есть два разложения одного и того же числа: Если два числа совпадают, то у них совпадают целые части, т.е. р 1 = q 1 , и совпадают обратные величины к дробным частям: Далее точно так же, по индукции. ¨ Наблюдательный читатель уже наверняка заметил, что основная теорема о цепных дробях (сформулированная в пункте 7), о необходимости доказательства которой так долго говорили большевики, к этому моменту оказалась доказанной. Более того, из вышеизложенного следует, что всякая цепная дробь (конечная или бесконечная) сходится именно к тому числу, которое было в нее разложено. И слава Богу! Аллилуйя!
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|