Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Предсказание химических структур




Квантовая механика может описать в деталях элек­тронные орбитали и энергетические состояния простей­шей из всех химических систем — атома водорода. Для более сложных атомов и даже для простейших химичес­ких молекул ее методы уже не столь точны, сложность вычислений становится непреодолимой и могут исполь­зоваться только приближенные методы. Для сложных молекул и кристаллов детальные вычисления невозмож­ны, по крайней мере на практике. Структуры молекул и расположение атомов внутри кристаллов могут быть определены эмпирическим путем, химическими и крис­таллографическими методами; эти структуры действи­тельно могут быть более или менее предсказуемы хими­ками и кристаллографами на основе эмпирических законов. Но это сильно отличается от фундаментального объяснения химических структур с помощью волнового уравнения Шредингера.

Важно осознать это серьезное ограничение кван­товой механики. Конечно, она помогает достичь ка­чественного или полуколичественного понимания химических связей и некоторых аспектов кристал­лов, таких как различие между изоляторами и провод­никами. Но она, исходя из своих начальных принци­пов, не позволяет предсказать формы и свойства даже простых молекул и кристаллов. Ситуация стано­вится еще хуже для жидкого состояния, для которого до сих пор нет удовлетворительного количественного описания. И не стоит строить иллюзии относительно того, что квантовая механика может дать детальное и точное объяснение форм и свойств очень сложных молекул и агрегатов макромолекул, изучаемых био­химиками и молекулярными биологами, не говоря уже о гораздо большей сложности форм и свойств да­же простейшей живой клетки.

Сейчас настолько распространено убеждение в том, что химия может обеспечить прочное основание для механистического понимания жизни, что кажется необходимым подчеркнуть, насколько шатки основы физической теории, на которые опирается сама хими­ческая наука. По словам Лайнуса Полинга:

«Мы можем верить физику-теоретику, который говорит нам, что все свойства можно рассчитать с помощью известных методоврешения уравнения Шредингера. Однако в действительности мы видели, что за 30 лет, прошедшие с открытия уравнения Шредингера, было сделано всего лишь несколько точ­ных неэмпирических квантово-механических расче­тов свойств веществ, в которых заинтересован химик. Для получения большей части информации о свойствах веществ химик все еще должен опираться на эксперимент» [95].

Хотя это было опубликовано двадцать лет назад и с тех пор были достигнуты значительные успехи в совершенствовании приближенных методов вычисле­ний в квантовой химии, положение по существу не изменилось и сегодня.

Тем не менее можно возразить, что детальные расче­ты в принципе могут быть сделаны. Но, даже допустив ради дискуссии, что такие расчеты можно осуществить, нельзя утверждать заранее, что они будут верными, то есть будут согласовываться с эмпирическими наблю­дениями. Так что в настоящее время нельзя считать до­казанным традиционное допущение о том, что сложные химические и биологические структуры могут быть полностью объяснены в рамках существующей физиче­ской теории.

Рис. 7. Возможные комбинации различных количеств стро­ительных блоков, которые можно соединять друг с другом либо концами, либо боками

 

Причины того, что трудно, если вообще возможно, предсказать форму сложной химической структуры, исходя из свойств составляющих ее атомов, может быть, можно сделать более понятными с помощью простой иллюстрации. Рассмотрим элементарные строительные блоки, которые можно добавлять друг к другу по очереди либо с концов, либо сбоку (рис. 7). С двумя строительными блоками имеем 2=4 воз­можные комбинации; с тремя — 2 = 8; с четырьмя — 24 = 16; с пятью — 25 = 32; с десятью — 2'° = 1024; с двадцатью — 220 = 1 048 576; с тридцатью — 230 = 1 073 741 824 и так далее. Число возможностей вскоре становится огромным.

 

 

Рис. 8. Диаграммы, представляющие возможные структуры систем с возрастающей степенью сложности. В случае А есть единственная структура с минимумом энергии, а в случае D воз­можно несколько одинаково стабильных структур

 

 

В химической системе различные возможные рас­положения атомов имеют разные потенциальные энер­гии вследствие электрических и других взаимодействий между ними; система будет самопроизвольно стремить­ся обрести структуру с минимальной потенциальной энергией. В простой системе всего лишь с несколькими возможными структурами одна из них может иметь заметно меньшую энергию, чем остальные; на рис. 8 А такая ситуация представлена минимумом на дне «потенциального колодца»; другие менее стабильные возможности представлены локальными минимума­ми на сторонах «колодца». В системах возрастающей сложности число возможных структур увеличивается (рис. 8 В, С, D); при этом вероятность существования уникальной структуры с минимумом энергии уменьша­ется. В ситуации, представленной на рис. 8 D, несколько различных структур будут одинаково стабильными с энергетической точки зрения. Если бы оказалось, что система принимает любую из этих возможных структур наугад или если бы она колебалась между ними, тогда проблемы бы не было. Но если бы она неизменно принимала только одну из этих структур, это означало бы, что какой-то другой фактор, отличный от энергии, определяет, что реализуется именно эта особенная структура из всех других возможных. Но существова­ние такого фактора физикой сегодня не признается.

Хотя химики, кристаллографы и молекулярные биологи и не могут проводить детальные расчеты, необходимые для предсказания для данной системы структуры или структур с минимальной энергией a priori, но они могут использовать различные при­ближенные методы в сочетании с эмпирическими дан­ными по структурам подобных веществ. Обычно эти вычисления не позволяют предсказывать уникальные структуры (кроме как для простейших систем), но поз­воляют получать лишь ряд возможных структур с бо­лее или менее равными минимальными энергиями. Таким образом, оказывается, что эти приближенные результаты подтверждают идею о том, что энергети­ческие соображения недостаточны для объяснения уникальной структуры сложных химических систем. Но этого вывода всегда можно избежать, утверждая, что уникальная стабильная структура должна иметь энергию более низкую, чем любая другая возможная структура. Это утверждение никогда не может быть опровергнуто, поскольку на практике для расчетов могут быть использованы только приближенные мето­ды; поэтому уникальная структура, реализованная в действительности, всегда может быть приписана тон­ким энергетическим эффектам, которые ускользают при вычислениях.

В отношении структуры кристаллов неорганичес­ких веществ эту ситуацию можно проиллюстрировать следующими соображениями Полинга:

«Простые ионные вещества, такие как галогениды щелочных металлов, имеют небольшой выбор струк­тур; существует очень мало стабильных расположе­ний ионов в кристалле, соответствующих формуле М+Х, и различные факторы, которые влияют на ста­бильность кристалла, вступают в борьбу друг с дру­гом, причем совсем необязательно каждый из них нахо­дит явное выражение при выборе между упаковками хлорида натрия и хлорида цезия. Для сложного веще­ства, такого как слюда, KalSi3O10(OH)2, или zunyite, Al13Si5O20(OH)10Cl, напротив, можно предложить много возможных структур, лишь слегка различающихся по своей природе и стабильности, и можно ожидать, что наиболее стабильная из этих возможных структур — та, которую фактически и принимает вещество,в своих различных чертах будет отражать различные факторы, определяющие структуру ионных кристал­лов. Оказалось возможным сформулировать набор правил относительно стабильности сложных ионных кристаллов... Эти правила были получены отчасти путем индукции из структур, известных в 1928 году, а отчасти путем дедукции из уравнений, описываю­щих энергию кристалла. Они не являются ни строги­ми в смысле их вывода, ни универсальными в плане их применения, но они оказались полезными в качестве критерия правильности структур, найденных (рас­считанных) для сложных кристаллов, а также в рентгеноструктурных исследованиях, где они позволяют предлагать разумные варианты структур для экспе­риментальной проверки» [96].

 

Рис. 9. Вверху: структура фермента фосфоглицераткиназы из мышцы лошади: α‑спирали представлены цилиндрами, β-нити — стрелками

Внизу: структура — α‑спирального участка в более крупноми масштабе (из Banks et al., 1979)

 

Диапазон возможных структур становится многое больше в органической химии, особенно в случае макромолекул, таких как белки, полипептидные цепи которых изгибаются, поворачиваются и складываются в сложные трехмерные формы (рис. 9). Надежно установлено, что в условиях, в которых белковая молекула стабильна, она складывается в уникальную структуру.

В многочисленных экспериментах белки заставляли развертываться в различной степени, изменяя их хи­мическое окружение; и затем обнаруживали, что они снова сворачиваются в свою нормальную структуру, когда их помещали в соответствующие условия; начи­ная от различных начальных состояний и следуя раз­личными путями свертывания, они приходят к одной и той же конечной структуре[97].

Этой стабильной конечной точкой, по-видимому, является структура с минимальной энергией. Но это не доказывает, что она является единственной воз­можной структурой с минимальной энергией, может быть много других возможных структур с той же ми­нимальной энергией. В самом деле, расчеты, проводи­мые для предсказания трехмерной структуры белков с использованием различных методов аппроксима­ции, неизменно дают слишком много решений. В ли­тературе по свертыванию белков это известно как «проблема множества минимумов» (multiple-mini­mum problem)[98].

Есть убедительные причины думать, что сам белок не «проверяет» все эти минимумы, пока не найдет один подходящий:

 

«Если бы цепь (полипептидная.— Прим. пер.) иссле­довала все возможные конфигурации наугад, путем вращения вокруг различных одиночных связей в струк­туре, потребовалось бы слишком много времени для достижения природной конфигурации. Например, если отдельные остатки несвернутой полипептидной цепи могут существовать только в двух состояниях, что является сильной недооценкой, тогда число воз­можных случайно образованных конформаций для цепи из 150 аминокислотных остатков составляет 10 (хо­тя, конечно, большинство из них, вероятно, будут стерически невозможными). Если бы каждая конформация исследовалась с частотой вращения молекул (10 сек), что является переоценкой, для опробования всех возможных конформаций потребовалось бы при­мерно 10 лет. Поскольку синтез и свертывание цепи белка, такого как рибонуклеаза или лизоцим, занима­ют около 2 минут, ясно, что в процессе свертывания не перебираются все конформаций. Вместо этого, как нам представляется, в ответ на локальное взаимодей­ствие пептидная цепь направляется по возможным низкоэнергетическим путям (число которых относи­тельно невелико), возможно, проходя через уникальные промежуточные состояния к конформаций с самой низкой свободной энергией» [99].

 

Но процесс свертывания не только может быть направлен по определенным путям, он может быть направлен также к одной особенной конформаций с минимальной энергией, выбранной из всех других возможных конформаций с той же самой минималь­ной энергией.

Это обсуждение приводит к общему выводу, что существующие физические теории могут быть в принципе неспособны объяснить уникальные струк­туры сложных молекул и кристаллов; они позволяют предложить набор возможных структур с минималь­ной энергией, но нет доказательств того, что в состоя­нии объяснить тот факт, что реализуется одна, а не другие из этих возможных структур. Поэтому можно себе представить, что фактор, отличный от энергии, выбирает между этими возможностями и, таким обра­зом, определяет специфическую структуру, которую принимает система[100].

Гипотеза, которая сейчас будет излагаться, осно­вана на идее о том, что этот отбор осуществляется причинностью нового типа, пока еще не признанного физикой,— посредством морфогенетических полей.

 

Формативная причинность

Гипотеза формативной причинности предполага­ет, что морфогенетические поля играют причинную роль в развитии и сохранении форм систем на всех уровнях сложности. В этом контексте слово «форма» включает не только форму внешней поверхности или границы системы, но также ее внутреннюю структуру. Предполагаемое возникновение формы вследствие действия морфогенетических полей названо здесь формативной причинностью, чтобы отличить ее от причинности энергетического типа, которой уже так основательно занимается физика[101]. Так как, хотя мор­фогенетические поля могут вызывать свои эффекты только в сочетании с энергетическими процессами, сами они неэнергетичны.

Идею неэнергетической формативной причиннос­ти легче понять с помощью аналогии из области архи­тектуры. Чтобы построить дом, нужны кирпичи и дру­гие строительные материалы, также необходимы строители, которые кладут эти материалы в должном порядке, и, кроме того, план архитектора, определяю­щий форму дома. Одни и те же строители, делая одно и то же общее количество работы, используя одно и то же количество строительных материалов, могут пост­роить дома различной формы на основе различных планов. Таким образом, план можно рассматривать как причину специфической формы дома, хотя, конечно, это не единственная причина: эта форма никогда не могла бы быть создана без строительных материалов и работы строителей. Аналогичным образом специфиче­ское морфогенетическое поле является причиной спе­цифической формы, принимаемой системой, хотя оно не может действовать без подходящих «строительных блоков» и без энергии, необходимой, чтобы поставить их на место.

Эта аналогия не имеет целью предположить, что причинная роль морфогенетических полей зависит от сознательно созданного проекта, но лишь подчеркива­ет, что не всякая причинность должна быть энергетиче­ской, даже несмотря на то, что все процессы изменения требуют затрат энергии. Сам по себе план дома не явля­ется видом энергии. Даже когда он начертан на бумаге или в конце концов реализован в виде дома, он ничего не весит и не имеет какой-либо собственной энергии Если бумага сожжена или дом разрушен, не происходит измеримого изменения массы или энергии — план просто исчезает. Подобно этому, согласно гипотезе формативной причинности, морфогенетические поля сами по себе неэнергетичны, но тем не менее они иг­рают причинную роль в определении форм систем, с которыми связаны. Ибо, если бы система была связа­на с другим морфогенетическим полем, она бы развивалась иначе[102]. Эта гипотеза может быть проверена опытным путем в тех случаях, когда морфогенетические поля, действующие на системы, могут быть изменены (см. ниже разделы 5. 6, 7. 4, 7. 6 и 11. 4).

Морфогенетические поля можно рассматривать к аналоги известных физических полей в том отношении, что они способны упорядочивать физические изменения, несмотря на то что сами они непосредственно наблюдаемы. Гравитационное и электромагнитное по. представляют собой пространственные структуры, которые невидимы, неосязаемы, неслышимы, без вкуса без запаха; они могут быть обнаружены только через соответствующие гравитационные и электромагнитные эффекты. Для того чтобы объяснить тот факт, что физи­ческие системы влияют друг на друга на расстоянии без какой-либо видимой материальной связи между ними, эти гипотетические поля наделяются свойством пересе­кать пустое пространство или даже фактически образо­вывать его. В одном смысле они нематериальны, но в другом — являются аспектами материи, поскольку о них можно узнать что-либо лишь по их действию на материальные системы. В сущности говоря, научное определение материи просто было расширено, чтобы принять в рассмотрение эти поля. Подобно этому, морфогенетические поля есть пространственные структу­ры, обнаруживаемые только по их морфогенетическому действию на материальные системы; они также могут рассматриваться как аспекты материи, если определение материи еще более расширяется, чтобы включить и их.

Хотя в предыдущих разделах обсуждался только морфогенез биологических и сложных химических систем, мы будем предполагать, что гипотеза форма­тивной причинности приложима к биологическим и физическим системам всех уровней сложности. Поскольку система любого типа имеет свою характер­ную форму, то каждая система должна иметь специ­фическое морфогенетическое поле определенного типа: так, должен быть один тип морфогенетического поля для протонов; другой для атомов азота; другой для молекул воды; другой для кристаллов хлористого натрия; другой для клеток мускулов земляных червей; другой для почек овцы; другой для слонов; другой для букового дерева и так далее.

Согласно организмической теории, системы или «организмы» иерархически организованы на всех уровнях сложности[103]. В нашем обсуждении эти систе­мы будут называться морфическими единицами. При­лагательное «морфический» (от греческого корня morphē — форма) подчеркивает аспект структуры, а слово «единица» — единство или целостность системы. В этом смысле химические и биологические системы состоят из иерархий морфических единиц: например, кристалл состоит из молекул, которые содержат ато­мы, которые, в свою очередь, содержат субатомные частицы. Кристаллы, молекулы, атомы и субатомные частицы есть морфические единицы, так же как живот­ные и растения, органы, ткани, клетки и органеллы. Простые примеры такого иерархического типа орга­низации можно представить наглядно в виде диаграм­мы — либо как «дерево» А, либо как набор «китайских шаров» В {рис. 10).

 

Рис. 10. Альтернативные варианты представления простой иерархической системы

 

 

Морфическая единица высшего уровня должна как-то координировать организацию частей, из которых она состоит. Мы будем предполагать, что она делает это посредством влияния своего морфогенетического поля на морфогенетические поля морфических единиц низ­ших уровней. Таким образом, морфогенетические поля, подобно самим морфическим единицам, имеют строго иерархическую организацию.

Способ, которым морфогенетические поля могут действовать на системы, находящиеся под их влияни­ем, обсуждается в следующей главе, а вопросы о том, откуда берутся они сами и что сообщает им их специ­фическую структуру, рассматриваются в главе 5.

Глава 4
Морфогенетические поля

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...