Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Кинематическая точность передачи

Для обеспечения кинематической точности предусмотрены нормы, ограничивающие кинематическую погрешность передачи и кинематическую погрешность колеса.

Кинематической погрешностью передачи Fк.п.п. называют разность между действительным j2 и номинальным (расчетным) j2н углами поворота ведомого зубчатого колеса передачи, выраженную в линейных величинах длиной дуги его делительной окружности, т.е. Fк.п.п = (j2 - j2н)×r, где r — радиус делительной окружности ведомого колеса.

Наибольшая кинематическая погрешность F'ior передачи определяется наибольшей алгебраической разностью значений кинематической погрешности передачи за полный цикл изменения относительного положения зубчатых колес (рис. 2.41, а) Здесь и далее штрихом обозначены погрешности, соответствующие однопрофильному зацеплению.

Наибольшая кинематическая погрешность передачи ограничена допуском F'io. Его значения в стандарте не приведены и определяются как сумма допусков на кинематическую погрешность ее колес, т. е.

F'io = F'i1+ F'i2.

Кинематической погрешностью зубчатого колеса F'к.п.к называют разность между действительным и номинальным (расчетным) углами поворота зубчатого колеса на его рабочей оси, ведомого точным (измерительным) колесом при номинальном взаимном положении осей вращения этих колес; ее выражают в линейных величинах длиной дуги делительной окружности (рис. 2.41, б).

Наибольшая кинематическая погрешность зубчатого колеса F'ir — наибольшая алгебраическая разность значений кинематической погрешности зубчатого колеса в пределах угла jполн полного оборота (см. рис. 2.41, б), Эта погрешность ограничивается допуском на кинематическую погрешность колеса F'i (значения в стандарте не приведены). Он определяется как сумма допусков на накопленную погрешность шага Fр и на погрешность профиля зуба ff:        F'i = Fр + ff.

Допускается нормировать кинематическую погрешность колеса на k шагах - F'i kr. Эта погрешность ограничивается допуском F'i k.

Погрешность обката Fcr возникает в результате кинематической погрешности делительной цепи зубообрабатывающего станка. Эту составляющую кинематической погрешности колеса определяют при его вращении на технологической оси, исключив циклические погрешности зубцовой частоты и кратных ей более высоких частот. Погрешность обката ограничивается допуском Fc, выраженным в тех же единицах, что и допуск на кинематическую погрешность колеса.

Накопленная погрешность k шагов Fpkr (рис. 2.42) — наибольшая разность дискретных значений кинематической погрешности зубчатого колеса при номинальном его повороте на k целых угловых шагов:

Fpkr = (j - k×2p/z)×r,

где j — действительный угол поворота зубчатого колеса; z — число зубьев зубчатого колеса; k×2p/z — номинальный угол поворота колеса (k ³ 2 — число целых угловых шагов); r — радиус делительной окружности колеса.

Допуск на накопленную погрешность k шагов обозначают Fpk.

 Накопленная погрешность шага зубчатого колеса Fpr — наибольшая алгебраическая разность значений накопленных погрешностей в пределах зубчатого колеса (см. рис. 2.42). Допуск на накопленную погрешность шага зубчатого колеса обозначают Fp. Накопленная погрешность шага зубчатого колеса образуется в основном вследствие погрешности обката и монтажного эксцентриситета зубчатого колеса.

Радиальное биение зубчатого венца Frr — разность действительных предельных положений исходного контура в пределах зубчатого колеса (от его рабочей оси).

Радиальное биение зубчатого венца ограничивается допуском Fr. Практически Frr определяется разностью расстояний от рабочей оси колеса до постоянных хорд Sc зубьев (рис. 2.43, а). Радиальное биение зубчатого венца вызвано неточным совмещением рабочей оси колеса с технологической осью при обработке зубьев, а также радиальным биением делительного колеса станка.

Колебанием длины общей нормали FvWr называют разность между наибольшей и наименьшей действительными длинами общей нормали в одном и том же зубчатом колесе: FvWr = Wнаиб – Wнаим. Оно зависит от тангенциальной составляющей погрешности обката. Эта погрешность ограничена допуском FvW.

Длина общей нормали зубчатого колеса W — расстояние между двумя параллельными плоскостями, касательными к двум разноименным активным боковым поверхностям А и В зубьев колеса (рис. 2.43, б). При этом общая нормаль к эвольвентным профилям является одновременно касательной к основной окружности.

Колебание измерительного межосевого расстояния за оборот колеса F''ir - разность между наибольшим и наименьшим действительными межосевыми расстояниями при двухпрофильном зацеплении измерительного зубчатого колеса с контролируемыми при повороте последнего на полный оборот (рис. 2.44).

Номинальным измерительным межосевым расстоянием а" называют расчетное расстояние между осями измерительного и проверяемого колеса, имеющего наименьшее дополнительное смещение исходного контура. При этом сопряженные зубья колес находятся в плотном двухпрофильном зацеплении.

Здесь и далее двумя штрихами обозначены погрешности, соответствующие двухпрофильному зацеплению. Эти колебания ограничиваются допусками F''i.

 

Плавность работы передачи

Эта характеристика передачи определяется параметрами, погрешности которых многократно (циклически) проявляются за оборот зубчатого колеса и также составляют часть кинематической погрешности. Аналитически или с помощью анализаторов кинематическую погрешность можно представить в виде спектра гармонических составляющих, амплитуда и частота которых зависят от характера составляющих погрешностей. Например, отклонения шага зацепления (основного шага) вызывают колебания кинематической погрешности с зубцовой частотой, равной частоте. входа в зацепление зубьев колес.

Циклический характер погрешностей, нарушающих плавность работы передачи, и возможность гармонического анализа дали основание определять и нормировать эти погрешности по спектру кинематической погрешности.

Под циклической погрешностью передачи fzkor (рис. 2.45, а) и зубчатого колеса fzkr (рис. 2.45, б) понимают удвоенную амплитуду гармонической составляющей кинематической погрешности соответственно передачи или колеса. Для ограничения циклической погрешности установлены допуски:

fzоk — на циклическую погрешность передачи и fzk — на циклическую погрешность зубчатого колеса.

Для ограничения циклической погрешности с частотой повторения, равной частоте входа зубьев в зацепление fzzor и fzzr, установлены допуски на циклическую погрешность зубцовой частоты в передаче fzzo и fzz. Эти допуски зависят от частоты циклической погрешности (равной числу зубьев колес z), степени точности, коэффициента осевого перекрытия eb и модуля m.

Коэффициентом осевого перекрытия косозубой цилиндрической передачи eb называют отношение угла осевого перекрытия зубчатого колеса к угловому шагу. Угол осевого перекрытия jb (рис. 2.46) — это угол поворота зубчатого колеса косозубой цилиндрической передачи, при котором точка контакта зубьев перемещается по линии зуба этого колеса от одного его торца до другого (т. е. угол поворота колеса передачи от положения входа до выхода зуба из зацепления).

Косозубые передачи со значительным коэффициентом осевого перекрытия eb по сравнению с прямозубыми имеют меньший зубцовый импульс (меньшую амплитуду первой гармонической составляющей), поэтому с увеличением eb допуск fzzo уменьшается.

Местные кинематические погрешности передачи f 'ior и зубчатого колеса f 'ir определяются наибольшей разностью между местными соседними экстремальными (минимальными и максимальными) значениями кинематической погрешности передачи или зубчатого колеса за полный цикл вращения колес передачи или в пределах оборота колеса jполн (рис. 2.47). Эти погрешности ограничиваются допусками соответственно f 'io f 'i, причем f 'i = êfPtê + ff.

Погрешность профиля зуба ffr (рис. 2.48) — расстояние по нормали между двумя ближайшими номинальными торцовыми профилями 1, между которыми размещается действительный торцовый активный профиль 2 зуба колеса. Под действительным торцовым профилем зуба понимают линию пересечения действительной боковой поверхности зуба зубчатого колеса плоскостью, перпендикулярной к его рабочей оси.

Погрешности профиля вызывают неравномерность движения колес, дополнительные динамические нагрузки, а также уменьшают поверхность контакта зубьев. Предельная погрешность профиля регламентируется допуском ff.

Действительный профиль рабочего участка зуба может иметь срез у вершины головки, называемый фланком. Применение колес с фланкированными зубьями значительно улучшает плавность работы передачи, обеспечивая более плавный вход зубьев в зацепление и выход из него. Если плавность работы колес соответствует требованиям стандарта, контроль плавности передач не обязателен, и, наоборот, если плавность передачи соответствует нормативам, плавность колес определять не обязательно. Отклонение шага (углового) в колесе fPtr – это кинематическая погрешность зубчатого колеса при его повороте на один номинальный угловой шаг.

Отклонение шага зацепления fPbr — разность между действительным Рд и номинальным Pн шагами зацепления (рис. 2.49).

Установлены верхнее и нижнее предельные отклонения шага ±fPt и шага зацепления (основного) ±fPb. Вместо отклонения шага fPtr можно применять разность любых шагов fvPtr, причем допуск на разность любых шагов fvPtr= 1,6×êfPt ê.

Колебание измерительного межосевого расстояния на одном зубе f''ir - разность между наибольшим и наименьшим действительными межосевыми расстояниями при двухпрофильном зацеплении измерительного зубчатого колеса с контролируемыми при повороте последнего на один угловой шаг (см. рис. 2.44). Эти колебания ограничиваются допусками f''i.

Измерительное межосевое расстояние на одном зубе может изменяться вследствие колебаний положения зуборезного инструмента относительно оси колеса, неравенства шагов зацепления (основных шагов) сопрягаемых колес, погрешностей в направлении зубьев колес и т. п.

 

Контакт зубьев в передаче

Для повышения износостойкости и долговечности зубчатых передач необходимо, чтобы полнота контакта сопряженных боковых поверхностей зубьев колес была наибольшей. При неполном и неравномерном прилегании зубьев уменьшается несущая площадь поверхности их контакта, неравномерно распределяются контактные напряжения и смазочный материал, что приводит к интенсивному изнашиванию зубьев. Для обеспечения необходимой полноты контакта зубьев в передаче установлены наименьшие размеры суммарного пятна контакта.

Суммарным пятном контакта называют часть активной боковой поверхности зуба колеса, на которой располагаются следы прилегания зубьев парного колеса (следы надиров или краски) в собранной передаче после вращения под нагрузкой, устанавливаемой конструктором. Пятно контакта (рис. 2.50) определяется: по длине зуба – отношением расстояния а между крайними точками следов прилегания за вычетом разрывов с, превышающих модуль (в мм), к длине зуба b, т. е. [(а – с)/b]×100 %; по высоте зуба — отношением средней (по длине зуба) высоты следов прилегания hm к высоте зуба соответствующей активной боковой поверхности hp, т. е. (hm/hp)×100 %.

Мгновенное пятно контакта, определяемое после поворота колеса собранной передачи на полный оборот при легком торможении.

На полноту контакта колес влияют погрешности формы зубьев и погрешности их взаимного расположения в передаче.

Отклонением осевых шагов по нормали FPxnr называют разность между действительным осевым расстоянием зубьев и суммой соответствующего числа номинальных осевых шагов, умноженную на синус угла наклона делительной линии зуба b р, т. е. FPxnr = FPxr×sinb (рис. 2.51, a).

Под действительным осевым расстоянием зубьев понимают расстояние между одноименными линиями зубьев косозубого зубчатого колеса по прямой, параллельной рабочей оси. Расстояние между одноименными линиями соседних зубьев является действительным осевым шагом. По Госту 1643 – 81 предусмотрены предельные отклонения осевых шагов по нормали ± FPxn.

Суммарная погрешность контактной линии Fkr— расстояние по нормали между двумя ближайшими номинальными потенциальными контактными линиями 1, условно наложенными на плоскость (поверхность) зацепления, между которыми размещается действительная потенциальная контактная линия 2 на активной боковой поверхности зуба (рис. 2.51, б). Под контактной линией понимают линию пересечения поверхности зуба поверхностью зацепления.

Допуск на суммарную погрешность контактной линии Fk для данного модуля зависит от ширины колеса (или длины контактной линии) и коэффициента eb (с их увеличением допуск увеличивается). Отклонение FPxnr влияет на продольный, а погрешность Fkr — на высотный контакт зубьев.

Погрешность направления зуба Fbr — расстояние по нормали между двумя ближайшими номинальными делительными линиями зуба 1 в торцовом сечении (рис. 2.51, в), между которыми проходит действительная делительная линия зуба 2, соответствующая рабочей ширине венца или полушеврона. Под действительной делительной линией зуба понимают линию пересечения действительной боковой поверхности зуба колеса делительным цилиндром, ось которого совпадает с рабочей осью. Допуск на направление зуба Fb увеличивается с увеличением ширины колеса (или длины контактной линии).

Отклонением от параллельности осей fxr называют отклонение от параллельности проекций рабочих осей зубчатых колес в передаче на плоскость, в которой лежит одна из осей и точка второй оси в средней плоскости передачи (рис. 2.51, г). Средней плоскостью передачи считают плоскость, проходящую через середину рабочей ширины зубчатого венца или (для шевронной передачи) через середину расстояния между внешними торцами, ограничивающими рабочую ширину полушевронов.

Перекос осей fyr — отклонение от параллельности проекции рабочих осей зубчатых колес в передаче на плоскость, параллельную одной из осей и перпендикулярную плоскости, в которой лежит эта ось, и точка пересечения второй оси со средней плоскостью передачи (рис. 2.51, г).

Отклонение от параллельности и перекос осей определяют в торцовой плоскости в линейных единицах на длине, равной рабочей ширине венца или ширине полушеврона. Эти погрешности, характеризующие точность монтажа передачи с нерегулируемым расположением осей, ограничивают допусками fx и fy.

Отклонениями межосевого расстояния far определяется точность монтажа передачи (рис. 2.51, г). Для этой погрешности установлены предельные отклонения ±fa.

При соответствии суммарного или мгновенного пятна контакта требованиям стандарта контроль по другим показателям, определяющим контакт зубьев в передаче, не является необходимым. Допускается определять пятна контакта с помощью измерительного колеса.

 

Боковой зазор

Для устранения возможного заклинивания при нагреве передачи, обеспечения условий протекания смазочного материала и ограничения мертвого хода при реверсировании отсчетных и делительных реальных передач они должны иметь боковой зазор jn (между нерабочими профилями зубьев сопряженных колес). Этот зазор необходим также для компенсации погрешностей изготовления и монтажа передачи и для устранения удара по нерабочим профилям, который может быть вызван разрывом контакта рабочих профилей вследствие динамических явлений. Такая передача является однопрофильной (контакт зубьев колес происходит по одним рабочим профилям).

Боковой зазор определяют в сечении, перпендикулярном к направлению зубьев, в плоскости, касательной к основным цилиндрам (рис. 2.52).

Независимо от степени точности изготовления колес передачи предусмотрено шесть видов сопряжении. Установлено шесть классов отклонений межосевого расстояния, обозначаемых в порядке убывания точности римскими цифрами от I до VI. Соответствие видов сопряжении и указанных классов, приведенных в табл. 2.13, допускается изменять.

На боковой зазор установлен допуск Тjn, определяемый разностью между наибольшим и наименьшим зазорами. По мере увеличения бокового зазора увеличивается допуск Тjn. Установлено восемь видов допуска на боковой зазор: х, у, z, а, b, с, d, h. Каждому виду сопряжения соответствует определенный вид допуска (см. табл. 2.13). Соответствие видов сопряжений и видов допусков допускается изменять, используя при этом и виды допуска x, у и z.

Боковой зазор jn min, необходимый для компенсации температурных деформаций и размещения смазочного материала, определяют по формуле

jn min = V + aw ×(a1×Dto1 - a2×Dto2)×2sina,

где V —толщина слоя смазочного материала между зубьями; aw — межосевое расстояние; a1 и a2 — температурные коэффициенты линейного расширения материала колес и корпуса; ×Dto1 и ×Dto2 — отклонение температур колеса и корпуса от 20 °С; a — угол профиля исходного контура.

Деформацию от нагрева определяют по нормали к профилям.

Боковой зазор обеспечивают путем радиального смещения исходного контура рейки (зуборезного инструмента) от его номинального положения в тело колеса (рис. 2.54). Под номинальным положением исходного контура понимают положение исходного контура на зубчатом колесе, лишенном погрешностей, при котором номинальная толщина зуба соответствует плотному двухпрофильному зацеплению.

Таблица 2.13

Виды сопряжений и соответствующие им виды допусков на боковой зазор и классы отклонений на межосевое расстояние

 

Виды сопряжений с зазором Обозначение вида сопряжений Для степеней точности по нормам плавности Виды допусков на боковой зазор Классы отклонений на межосевое расстояние
        I
нулевым H 3 – 7 h II
весьма малым E 3 – 7 h II
малым D 3 – 8 d III
уменьшенным C 3 – 9 c IV
нормальным B 3 – 11 b V
увеличенным A 3 - 12 a VI
      z, y, x  

 

Связь смещения исходного контура с боковым зазором jn и утолщением толщины зуба по постоянной хорде Ecs можно установить соответственно из треугольников abc и dbc (см. рис. 2.54):

jn min = 2EHs×sina;

Ecs = 2EHs×tga.

Дополнительное смещение исходного контура ЕHr от его номинального положения в тело зубчатого колеса осуществляют для обеспечения в передаче гарантированного бокового зазора. Наименьшее дополнительное смещение исходного контура назначают в зависимости от степени точности по нормам плавности и вида сопряжения и обозначают: для зубчатых колес с внешними зубьями как - EHs, для колес с внутренними зубьями - через +EHi.

В табл. 2.14 приведены показатели, определяющие гарантированный боковой зазор, допуски и отклонения по нормам бокового зазора.

Таблица 2.14

Показатели бокового зазора

 

 

Контролируемый объект

Показатель

Допуск или отклонение

  Наименование Обозначе-ние   Наименование Обозначе-ние
Передача с нерегули-ремым расположени-ем осей Отклонение меж-осевого расстояния   far Предельные откло-нения межосевого расстояния   ±fa
Передача с регули-руемым положением осей Наименьший боковой зазор   jn min Допуск бокового зазора   Tjn

 

 

Зубчатые колеса

Наименьшее допол-нительное смещение исходного контура   EHs Допуск на смещение исходного контура   TH
Наименьшее откло-нение средней дли-ны общей нормали   EWms Допуск на среднюю длину общей нормали   Twm
Наименьшее откло-нение длины общей нормали   EWs Допуск на длину общей нормали   Tw
Наименьшее откло-нение толщины зуба   Ecs Допуск на толщину зуба     Tc
Верхнее отклонение измерительного межосевого расстояния   Ea''s Нижнее отклонение измерительного межосевого расстояния   Ea''i

 

Примечание. Среднюю длину общей нормали определяют по формуле

Wm = (W1 + W2 + × × × + Wz)/z,

где W1, W2, × × × Wz – действительные длины общей нормали; z – число зубьев.

 

Общий боковой зазор должен состоять из гарантированного бокового зазора jn min и зазора Кj, компенсирующего погрешности изготовления зубчатых колес и монтажа передачи и уменьшающего боковой зазор:

jn min + Кj = 2(EHs1 + EHs2)×sina.

Зазор Кj отсчитывают по нормали к зубьям.

Необходимое наименьшее смещение исходного контура на обоих зубчатых колесах

EHs1 + EHs2 = 0,5×(jn min + Кj)/ sina.

Зазор Кj предназначен для компенсации ряда погрешностей изготовления зубчатых колес и монтажа передачи и определяется по формуле

.

Наибольший боковой зазор, получаемый между зубьями в передаче, не ограничен стандартом. Он представляет собой замыкающее звено сборочной размерной цепи, в которой составляющими размерами, ограниченными допусками, являются межосевое расстояние и смещение исходных контуров при нарезании обоих колес и др. Поэтому наибольший зазор не может превышать значения, получаемого при наиболее неблагоприятном сочетании отклонений составляющих размеров:

jn max = jn min + 2(TH1 + TH2 + 2fa)×sina.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...